129
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of anisotropic thermal conductivity of ferrofluids

Pages 1030-1036 | Received 18 Dec 2018, Accepted 28 Apr 2019, Published online: 31 May 2019

References

  • Odenbach, S. Ferrofluids: Magnetically Controllable Fluids and Their Applications, Springer, New York, 2002.
  • Rosensweig, R. E. Ferrohydrodynamics, 1st ed. Dover, New York, 1997.
  • Clark, N. A. Soft-Matter Physics: Ferromagnetic Ferrofluids. Nature. 2013, 504, 229–230. doi: 10.1038/504229a.
  • Alsaady, M.; Fu, R.; Li, B.; Boukhanouf, R.; Yan, Y. Thermo-Physical Properties and Thermo-Magnetic Convection of Ferrofluid. Appl. Therm. 2015, 88, 14–21. doi: 10.1016/j.applthermaleng.2014.09.087.
  • Manuel, B. “Superparamagnetism Theory and Applications”. Discussion of Two Papers on Magnetic Nanoparticles: 2012.
  • Altan, C. L.; Elkatmis, A.; Yüksel, M.; Aslan, N.; Bucak, S. Enhancement of Thermal Conductivity upon Application of Magnetic Field to Fe3O4 Nanofluids. J. Appl. Phys. 2011, 110, 093917. doi: 10.1063/1.3658868.
  • Gan Jia Gui, N.; Stanley, C.; Nguyen, N.-T.; Rosengarten, G. Ferrofluids for Heat Transfer Enhancement under an External Magnetic Field/. Int. J. Heat Mass Transfer. 2018, 123, 110–121. doi: 10.1016/j.ijheatmasstransfer.2018.02.100.
  • Wang, L.; Wang, Y.; Yan, X.; Wang, X.; Feng, B. Investigation on Viscosity of Fe3O4 Nanofluid under Magnetic Field. Int. Commun. Heat Mass Transfer. 2016, 72, 23–28. doi: 10.1016/j.icheatmasstransfer.2016.01.013.
  • Kronkalns, G. M. o. The Thermal and Electrical Conductivities of a Ferrofluid in a Magnetic Field. Magnitnaya Gidrodinamika 1977, 3, 138–140. (in Russian).
  • Li, Q.; Xuan, Y.; Wang, J. Experimental Investigations on Transport Properties of Magnetic Fluids. Exp. Therm. Fluid Sci. 2005, 30, 109–116. doi: 10.1016/j.expthermflusci.2005.03.021.
  • Philip, J.; Shima, P. D.; Raj, B. Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures. Appl. Phys. Lett. 2007, 91, 2003108. https://doi.org/10.1063/1.2812699
  • Philip, J.; Shima, P. D.; Raj, B. Nanofluid with Tunable Thermal Properties. Appl. Phys. Lett. 2008, 92, 043108. doi: 10.1063/1.2838304.
  • Fang, X.; Xuan, Y.; Li, Q. Anisotropic Thermal Conductivity of Magnetic Fluids. Progr. Nat. Sci. 2009, 19, 205–211. doi: 10.1016/j.pnsc.2008.06.009.
  • Nurdin, I.; Yaacob, I. I.; Johan, M. R. Enhancement of Thermal Conductivity and Kinematic Viscosity in Magnetically Controllable Maghemite (c-Fe2O3) Nanofluids. Exp. Ther. Fluid Sci. 2016, 77, 265–271. doi: 10.1016/j.expthermflusci.2016.05.002.
  • Suleimanov, B. A.; Abbasov, H. F. Effect of Copper Nanoparticle Aggregation on the Thermal Conductivity of Nanofluids. Russ. J. Phys. Chem. 2016, 90, 420–428.. doi: 10.1134/S0036024416020308.
  • Suleimanov, B. A.; Ismayilov, R. H.; Abbasov, H. F.; Wang, W. Z.; Peng, S. M. Thermophysical Properties of Nano- and Microfluids with [Ni5(l5-Pppmda)4Cl2] Metal String Complex Particles. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 513, 41–50. doi: 10.1016/j.colsurfa.2016.11.026.
  • Huminic, G.; Huminic, A.; Dumitrache, F.; Fleaca, C.; Morjan, I. Experimental Study of Thermo-Physical Properties of Nanofluids Based on -Fe2O3 Nanoparticles for Heat Transfer Applications. Heat Transfer Eng. 2017, 38, 1496–1505. doi: 10.1080/01457632.2016.1255090.
  • Lajvardi, M.; Moghimi-Rad, J.; Hadi, I.; Gavili, A.; Isfahani, T. D.; Zabihi, F.; Sabbaghzadeh, J. Experimental Investigation for Enhanced Ferrofluid Heat Transfer under Magnetic Field Effect. J. Magn. Magn. Mater. 2010, 322, 3508–3513. doi: 10.1016/j.jmmm.2010.06.054.
  • Vinod, S.; Philip, J. Experimental Evidence for the Significant Role of Initial Cluster Size and Liquid Confinement on Thermo-Physical Properties of Magnetic Nanofluids under Applied Magnetic Field. J. Mol. Liq. 2018, 257, 1–11. doi: 10.1016/j.molliq.2018.02.086.
  • Brojabasi, S.; Muthukumaran, T.; Laskar, J. M.; Philip, J. The Effect of Suspended Fe3O4 Nanoparticle Size on Magneto-Optical Properties of Ferrofluids. Opt. Commun. 2015, 336, 278–285. doi: 10.1016/j.optcom.2014.09.065.
  • Abbasov, H. F. Determination of Nanolayer Thickness and Effective Thermal Conductivity of Nanofluids. J. Dispers. Sci. Technol. 2019, 40, 594–603.. doi: 10.1080/01932691.2018.1475241
  • Feng, Y.; Yu, B.; Xu, P.; Zou, M. The Effective Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles. J. Phys. D: Appl. Phys. 2007, 40, 3164–3171. doi: 10.1088/0022-3727/40/10/020.
  • Eapen, J.; Rusconi, R.; Piazza, R.; Yip, S. The Classical Nature of Thermal Conduction in Nanofluids. ASME. J. Heat Transfer. 2010, 132, 102402–102414. doi: 10.1115/1.4001304.
  • Hashin, Z.; Shtrikman, S. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials. J. Appl. Phys. 1962, 33, 3125. doi: 10.1063/1.1728579.
  • Li, Y.; Yan, H.; Massoudi, M.; Wu, W.-T. Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field. Energies. 2017, 10, 1065. doi: 10.3390/en10071065.
  • Suh, Y. J.; Cho, K. Thermal Conductivity Enhancement of Magnetic Fluids under Magnetic Field Based on Percolation Theory. Mater. Trans. 2015, 56, 1262–1268. doi: 10.2320/matertrans.M2015068.
  • Dolatabadi, N.; Rahmani, R.; Rahnejat, H.; Garner, C. P. Thermal Conductivity and Molecular Heat Transport of Nanofluids. RSC Adv. 2019, 9, 2516–2524. doi: 10.1039/C8RA08987F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.