332
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

An investigation on the stability of the hazelnut oil-water emulsion

, &
Pages 929-940 | Received 29 Jan 2019, Accepted 14 Apr 2019, Published online: 24 May 2019

References

  • Alwandi, N.; Fatehi, P. Synthetic and Lignin-Based Surfactants: Challenges and Opportunities. CRC. 2018, 1, 126–138. DOI:10.1016/j.crcon.2018.07.006.
  • Udeagbara, S. G. Effect of temperature and impurities on surface tension of crude Oil. Ph.D. Thesis, University of Ibadan, 2009.
  • Gupta, S.; Sanyal, S.; Datta, S.; Moulik, S. Preparation of Prospective Plant Oil Derived Micro-Emulsion Vehicles for Drug Delivery. Indian J. Biochem. Biophys. 2006, 43, 254–257.
  • Cambiella, A.; Benito, J.; Pazos, C.; Coca, J.; Ratoi, M.; Spikes, H. The Effect of Emulsifier Concentration on the Lubricating Properties of Oil-in-Water Emulsions. Tribol. Lett. 2006, 22, 53–65. DOI:10.1007/s11249-006-9072-1.
  • Xavier, J. A. Effect of Varying Surfactant Concentration on Interfacial Tension, Master Thesis, Dalhousie University, Halifax, Nova Scotia, 2011.
  • Mohamed, A. I.; Sultan, A. S.; Hussein, I. A.; Al-Muntasheri, G. A. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions. J. Chem. 2017, 2017, 1. DOI:10.1155/2017/5471376.
  • Paramashivaiah, B.; Rajashekhar, C. Studies on Effect of Various Surfactants on Stable Dispersion of Graphene Nano Particles in Simarouba Biodiesel. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012083. DOI:10.1088/1757-899X/149/1/012083.
  • Esmaeili, H.; Esmaeilzadeh, F.; Mowla, D. Effect of Surfactant on Stability and Size Distribution of Gas Condensate Droplets in Water. J. Chem. Eng. Data. 2014, 59, 1461–1467. DOI:10.1021/je4009574.
  • Pichot, R.; Spyropoulos, F.; Norton, I. O/W Emulsions Stabilised by Both Low Molecular Weight Surfactants and Colloidal Particles: The Effect of Surfactant Type and Concentration. J. Colloid Interface Sci. 2010, 352, 128–135. DOI:10.1016/j.jcis.2010.08.021.
  • Afshar Ghotli, R.; Abdul Aziz, A.; Ibrahim, S. Effect of Various Curved-Blade Impeller Geometries on Drop Size in a Liquid–Liquid Stirred Vessel. Chem. Eng. Commun. 2017, 204, 884–896. DOI:10.1080/00986445.2017.1325738.
  • O’Rourke, A. M.; MacLoughlin, P. A Comparison of Measurement Techniques Used in the Analysis of Evolving Liquid–Liquid Dispersions. Chem. Eng. Process. 2005, 44, 885–894. DOI:10.1016/j.cep.2004.10.001.
  • Kurban, A.; Angeli, P.; Mendes-Tatsis, M.; Hewitt, G. Stratified and Dispersed Oil-Water Flows in Horizontal Pipes. Multiphase 95. 1995, 277–291.
  • Pacek, A.; Moore, I.; Nienow, A.; Calabrese, R. Video Technique for Measuring Dynamics of Liquid‐Liquid Dispersion during Phase Inversion. AIChE J. 1994, 40, 1940–1949. DOI:10.1002/aic.690401203.
  • Denkova, P. S.; Tcholakova, S.; Denkov, N. D.; Danov, K. D.; Campbell, B.; Shawl, C.; Kim, D. Evaluation of the Precision of Drop-Size Determination in Oil/Water Emulsions by Low-Resolution NMR Spectroscopy. Langmuir. 2004, 20, 11402–11413. DOI:10.1021/la048649v.
  • Boxall, J. A.; Koh, C. A.; Sloan, E. D.; Sum, A. K.; Wu, D. T. Measurement and Calibration of Droplet Size Distributions in Water-in-Oil Emulsions by Particle Video Microscope and a Focused Beam Reflectance Method. Ind. Eng. Chem. Res. 2009, 49, 1412–1418. DOI:10.1021/ie901228e.
  • Schümann, H.; Khatibi, M.; Tutkun, M.; H. Pettersen, B.; Yang, Z.; Nydal, O. J. Droplet Size Measurements in Oil–Water Dispersions: A Comparison Study Using FBRM and PVM. J. Dispers. Sci. Technol. 2015, 36, 1432–1443. DOI:10.1080/01932691.2014.989569.
  • Heath, A. R.; Fawell, P. D.; Bahri, P. A.; Swift, J. D. Estimating Average Particle Size by Focused Beam Reflectance Measurement (FBRM). Part. Part. Syst. Charact. 2002, 19, 84–95. DOI:10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1.
  • Maa, Y.-F.; Hsu, C. Liquid-Liquid Emulsification by Rotor/Stator Homogenization. J. Control. Release. 1996, 38, 219–228. DOI:10.1016/0168-3659(95)00123-9.
  • Perrechil, F.; Leonardi, G.; Friberg, S. Optical Microscopy and Surface Thermodynamics of J0. Microscopy Advances in Scientific Research and Education. Formatex. Madrid. 2014, 1037–1042.
  • Agboola, S. O.; Singh, H.; Munro, P. A.; Dalgleish, D. G.; Singh, A. M. Destabilization of Oil-in-Water Emulsions Formed Using Highly Hydrolyzed Whey Proteins. J. Agric. Food Chem. 1998, 46, 84–90. DOI:10.1021/jf970365b.
  • Bendjaballah, M.; Canselier, J. P.; Oumeddour, R. Optimization of Oil-in-Water Emulsion Stability: experimental Design, Multiple Light Scattering, and Acoustic Attenuation Spectroscopy. J. Dispers. Sci. Technol. 2010, 31, 1260–1272. DOI:10.1080/01932690903224888.
  • Karapantsios, T. D.; Kostoglou, M. Electrical resistance tomography for monitoring emulsions and foams. In: iCEF 11: International Congress on Engineering and Food. Athens, Greece, May 22–26, 2011.
  • Liu, Z. Q.; Yang, X.; Zhang, Q. TURBISCAN: History, Development, Application to Colloids and Dispersions. AMR. 2014, 936, 1592–1596. DOI:10.4028/www.scientific.net/AMR.936.1592.
  • Mirshekari, F.; Pakzad, L. Mixing of Oil in Water through Electrical Resistance Tomography and Response Surface Methodology. Chem. Eng. Technol. 2019, 42, 1101–1115. DOI:10.1002/ceat.201800563.
  • Kaombe, D. D.; Lenes, M.; Toven, K.; Glomm, W. R. Turbiscan as a Tool for Studying the Phase Separation Tendency of Pyrolysis Oil. Energy Fuels. 2013, 27, 1446–1452. DOI:10.1021/ef302121r.
  • Kang, W.; Xu, B.; Wang, Y.; Li, Y.; Shan, X.; An, F.; Liu, J. Stability Mechanism of W/O Crude Oil Emulsion Stabilized by Polymer and Surfactant. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 384, 555–560. DOI:10.1016/j.colsurfa.2011.05.017.
  • Nesterenko, A.; Drelich, A.; Lu, H.; Clausse, D.; Pezron, I. Influence of a Mixed Particle/Surfactant Emulsifier System on Water-in-Oil Emulsion Stability. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 457, 49–57. DOI:10.1016/j.colsurfa.2014.05.044.
  • Marie, P.; Perrier-Cornet, J.; Gervais, P. Influence of Major Parameters in Emulsification Mechanisms Using a High-Pressure Jet. J. Food Eng. 2002, 53, 43–51. DOI:10.1016/S0260-8774(01)00138-8.
  • Abismaıl, B.; Canselier, J. P.; Wilhelm, A. M.; Delmas, H.; Gourdon, C. Emulsification by Ultrasound: drop Size Distribution and Stability. Ultrason. Sonochem. 1999, 6, 75–83. DOI:10.1016/S1350-4177(98)00027-3.
  • Mohammed, A.; Okoye, S. I.; Salisu, J. Effect of Dispersed Phase Viscosity on Stability of Emulsions Produced by a Rotor Stator Homogenizer. Int. J. Sci Basic Appl. Res. 2016, 25, 256–267.
  • Mollakhalili Meybodi, N.; Mohammadifar, M.; Abdolmaleki, K. Effect of Dispersed Phase Volume Fraction on Physical Stability of Oil-in-Water Emulsion in the Presence of Gum Tragacanth. J. Food Qual. Hazards Control. 2014, 1, 102–107.
  • Joshi, H. C.; Pandey, I. P.; Kumar, A.; Garg, N. A Study of Various Factors Determining the Stability of Molecules. Adv. Pure Appl. Chem. 2012, 1, 7–11.
  • Amer, E. H.; Cooke, M.; Kowalski, A.; Sharratt, P. Dispersion of Silicone Oil in Water Surfactant Solution: effect of Impeller Speed, Oil Viscosity and Addition Point on Drop Size Distribution. Chem. Eng. Process. 2009, 48, 633–642. DOI:10.1016/j.cep.2008.07.008.
  • Malik, D.; Pakzad, L. Experimental Investigation on an Aerated Mixing Vessel through Electrical Resistance Tomography (ERT) and Response Surface Methodology (RSM). Chem. Eng. Res. Design. 2018, 129, 327–343. DOI:10.1016/j.cherd.2017.11.002.
  • Pakzad, L.; Ein, ‐Mozaffari, F.; Chan, P. Measuring Mixing Time in the Agitation of Non‐Newtonian Fluids through Electrical Resistance Tomography. Chem. Eng. Technol. 2008, 31, 1838–1845. DOI:10.1002/ceat.200800362.
  • Kumar, V.; Taylor, M. K.; Mehrotra, A.; Stagner, W. C. Real-Time Particle Size Analysis Using Focused Beam Reflectance Measurement as a Process Analytical Technology Tool for a Continuous Granulation–Drying–Milling Process. AAPS PharmSciTech. 2013, 14, 523–530. DOI:10.1208/s12249-013-9934-4.
  • Xu, Y.; Hanna, M. A.; Josiah, S. J. Hybrid Hazelnut Oil Characteristics and Its Potential Oleochemical Application. Ind. Crops. Prod. 2007, 26, 69–76. DOI:10.1016/j.indcrop.2007.01.009.
  • Velikov, K. P.; Velev, O. D.; Marinova, K. G.; Constantinides, G. N. Effect of the Surfactant Concentration on the Kinetic Stability of Thin Foam and Emulsion Films. Faraday Trans. 1997, 93, 2069–2075. DOI:10.1039/a608305f.
  • Khatibi, M. Experimental study on droplet size of dispersed oil-water flow. Master Thesis, Norwegian University of Science and Technology, Trondheim, Norway 2013.
  • Facal, P.; Cheng, C.; Sedev, R.; Stocco, A.; Binks, B.; Wang, D. Van Der Waals Emulsions: emulsions Stabilized by Surface Inactive, Hydrophilic Particles via Van Der Waals Attraction. Angew. Chem. Int. Ed. 2018, 57, 9510–9514. DOI:10.1002/anie.201805410.
  • Urrutia, P. I. Predicting water-in-oil emulsion coalescence from surface pressure isotherms.Master Thesis, University of Calgary, Calgary, Alberta 2006.
  • Silva, H. D.; Cerqueira, M. A.; Vicente, A. A. Influence of Surfactant and Processing Conditions in the Stability of Oil-in-Water Nanoemulsions. J. Food Eng. 2015, 167, 89–98. DOI:10.1016/j.jfoodeng.2015.07.037.
  • Thavorn, J.; Hamon, J. J.; Kitiyanan, B.; Striolo, A.; Grady, B. P. Competitive Surfactant Adsorption of AOT and Tween 20 on Gold Measuered Using Quarts Crystal Microbalance with Dissipation. Langmuir. 2014, 30, 11031–11039. DOI:10.1021/la502513p.
  • Chanamai, R.; McClements, D. J. Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions. J. Colloid Interface Sci. 2000, 225, 214–218. DOI:10.1006/jcis.2000.6766.
  • Giapos, A.; Pachatouridis, C.; Stamatoudis, M. Effect of the Number of Impeller Blades on the Drop Sizes in Agitated Dispersions. Chem. Eng. Res. Design 2005, 83, 1425–1430. DOI:10.1205/cherd.04167.
  • Centeno, R. C.; Bustamante-Rendón, R.; Hernández-Fragoso, J.; Arroyo-Ordoñez, I.; Pérez, E.; Alas, S.; Goicochea, A. G. Surfactant Chain Length and Concentration Influence on the Interfacial Tension of Two Immiscible Model Liquids: A Coarse–Grained Approach. J. Molecul Model. 2017, 23, 306. DOI:10.1007/s00894-017-3474-x.
  • Pacek, A.; Chamsart, S.; Nienow, A.; Bakker, A. The Influence of Impeller Type on Mean Drop Size and Drop Size Distribution in an Agitated Vessel. Chem. Eng. Sci. 1999, 5, 4211–4222. DOI:10.1016/S0009-2509(99)00156-6.
  • Desnoyer, C.; Masbernat, O.; Gourdon, C. Experimental Study of Drop Size Distributions at High Phase Ratio in Liquid–Liquid Dispersions. Chem. Eng. Sci. 2003, 58, 1353–1363. DOI:10.1016/S0009-2509(02)00461-X.
  • El-Hamouz, A.; Cooke, M.; Kowalski, A.; Sharratt, P. Dispersion of Silicone Oil in Water Surfactant Solution: effect of Impeller Speed, Oil Viscosity and Addition Point on Drop Size Distribution. Chem. Eng. Process. 2009, 48, 633–642. DOI:10.1016/j.cep.2008.07.008.
  • Clain, P.; Ndoye, F. T.; Delahaye, A.; Fournaison, L.; Lin, W.; Dalmazzone, D. Particle Size Distribution of TBPB Hydrates by Focused Beam Reflectance Measurement (FBRM) for Secondary Refrigeration Application. Int. J. Refrig. 2015, 50, 19–31. DOI:10.1016/j.ijrefrig.2014.10.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.