135
Views
9
CrossRef citations to date
0
Altmetric
Articles

Ultrasound-assisted synthesis of 1, 8-dioxodecahydroacridine derivatives in presence of Ag doped CdS nanocatalyst

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1145-1158 | Received 27 Jan 2019, Accepted 28 Apr 2019, Published online: 22 May 2019

References

  • Denny, W. A . Acridine Derivatives as Chemotherapeutic Agents. Curr. Med. Chem. 2002, 9 , 1655.
  • Anderson, M. O. ; Sherrill, J. ; Madrid, P. B. ; Liou, A. P. ; Weisman, J. L. ; DeRisi, J. L. ; Guy, K . Parallel Synthesis of 9-Aminoacridines and Their Evaluation against Chloroquine-Resistant Plasmodium falciparum. Bioorg. Med. Chem. 2006, 14 , 334. DOI: 10.1016/j.bmc.2005.08.017.
  • Demeunynck, M. ; Charmantray, F . Interest of Acridine Derivatives in the Anticancer Chemotherapy. A. Martelli. Curr. Pharm. Des. 2001, 7 , 1703.
  • Hamy, F. ; Brondani, V. ; Florsheimer, A. ; Stark, W. ; Blommers, M. J. J. ; Klimkait, T . A New Class of HIV-1 Tat Antagonist Acting through Tat-TAR inhibition. Biochemistry. 1998, 37 , 5086. DOI: 10.1021/bi972947s.
  • Srivastava, A. ; Nizamuddin, C . Synthesis and Fungicidal Activity of Some Acridine Derivatives. Indian J. Heterocycl. Chem. 2004, 13 , 261.
  • Mikata, Y. ; Yokoyama, M. ; Mogami, K. ; Kato, M. ; Okura, I. ; Chikira, M. ; Yano, S . Intercalator-Linked Cisplatin: synthesis and Antitumor Activity of Cis-Dichloroplatinum(II) Complexes Connected to Acridine and Phenylquinolines by One Methylene Chain. Inorg. Chim. Acta. 1998, 279 , 51. DOI: 10.1016/S0020-1693(98)00035-8.
  • Das, B. ; Thirupathi, P. ; Mahender, I. ; Reddy, V. S. ; Rao, Y. K . Amberlyst-15: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 1,8-Dioxo-Octahydroxanthenes and 1,8-Dioxo-Decahydroacridinesao. J. Mol. Catal. A: Chem. 2006, 247 , 233. DOI: 10.1016/j.molcata.2005.11.048.
  • Xia, J. J. ; Zhang, K. H . Synthesis of N-Substituted Acridinediones and Polyhydroquinoline Derivatives in Refluxing Water. Molecules. 2012, 17 , 5339. DOI: 10.3390/molecules17055339.
  • Jin, T. S. ; Zhang, J. S. ; Guo, T. T. ; Wang, A. Q. ; Li, T. S . One-Pot Clean Synthesis of 1, 8-Dioxo-Decahydroacridines Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media. Synlett. 2004, 12 , 1425.
  • Hong, M. ; Xiao, G . FSG-Hf(NPf2)4 Catalyzed, Environmentally Benign Synthesis of 1,8-Dioxo-Decahydroaridines in Water–Ethanol. J. Fluorine Chem. 2012, 144 , 7. DOI: 10.1016/j.jfluchem.2012.09.006.
  • Balalaie, S. ; Chadegani, F. ; Darviche, F. ; Bijanzadeh, H. R . One‐Pot Synthesis of 1,8‐Dioxo‐Decahydroacridine Derivatives in Aqueous Media. Chin. J. Chem. 2009, 27 , 1953. DOI: 10.1002/cjoc.200990328.
  • Xuesen, F. ; Yanzhen, L. ; Xinying, Z. ; Guirong, Q. ; Jianji, W . An Efficient and Green Preparation of 9‐Arylacridine‐1,8‐Dione Derivatives. Heteroat. Chem. 2007, 18 , 786.
  • Karimian, S. ; Tajik, H . Synthesis of 1,8-Dioxo-Decahydroacridines Using Pyridinium Hydrogen Sulfate Ionic Liquid as an Green, Efficient and Reusable Catalyst. LOC. 2016, 13 , 163. DOI: 10.2174/1570178613666160104232735.
  • Jin, T. ; Zhang, J. ; Guo, T. ; Wang, A. ; Li, T . One-Pot Clean Synthesis of 1, 8-Dioxo-Decahydroacridines Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media. Synthesis. 2004, 2004 , 2001. DOI: 10.1055/s-2004-829151.
  • M.; Dabiri, M. ; Baghbanzadeh, E. ; Arzroomchilar, 1. Methylimidazolium Triflouroacetate ([Hmim] TFA): an Efficient Reusable Acidic Ionic Liquid for the Synthesis of 1, 8-Dioxo-Octahydroxanthenes and 1, 8-Dioxo-Decahydroacridines. Catal. Commun. 2008, 9 , 939. DOI: 10.1016/j.catcom.2007.09.023.
  • Chandrasekhar, S. ; Rao, Y. ; Sreelakshmi, L. ; Mahipal, B. ; Reddy, C. R . Tris (Pentafluorophenyl) Borane-Catalyzed Three-Component Reaction for the Synthesis of 1, 8-Dioxodecahydroacridines under Solvent-Free Conditions. Synthesis. 2008, 2008 , 1737. DOI: 10.1055/s-2008-1067039.
  • Singh, S. K. ; Singh, K. N . Eco‐Friendly and Facile One‐Pot Multicomponent Synthesis of Acridinediones in Water under Microwave. J. Heterocyclic Chem. 2011, 48 , 69. DOI: 10.1002/jhet.508.
  • Kidwai, M. ; Bhatnagar, D . Ceric Ammonium Nitrate (CAN) Catalyzed Synthesis of N-Substituted Decahydroacridine-1,8-Diones in PEG. Tetrahedron Lett. 2010, 51 , 2700. DOI: 10.1016/j.tetlet.2010.03.033.
  • Rezaei, R. ; Khalifeh, R. ; Rajabzadeh, M. ; Dorosty, L. ; Doroodmand, M. M . Melamine-Formaldehyde Resin Supported H+-Catalyzed Three-Component Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives in Water and under Solvent-Free Conditions. Heterocycl. Commun. 2013, 19 , 57.
  • Ziarani, G. M. ; Badiei, A. ; Hassanzadeh, M. ; Mousavi, S . Synthesis of 1, 8-Dioxo-Decahydroacridine Derivatives Using Sulfonic Acid Functionalized Silica (SiO2-Pr-SO3H) under Solvent Free Conditions. Arabian. J. Chem. 2014, 7 , 335. DOI: 10.1016/j.arabjc.2011.01.037.
  • Ezzat, R. ; Sara, E. ; Maryam, K . Magnetically Recoverable, Nanoscale‐Supported Heteropoly Acid Catalyst for Green Synthesis of Biologically Active Compoundsin Water. Chinese. J. Catal. 2013, 34 , 1513.
  • Mohammad, A. G. ; Javad, S. G. ; Halimeh, M . Fe3O4 Nanoparticles: As an Efficient, Green and Magnetically Reusable Catalyst for the One-Pot Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives under Solvent-Free Conditions. C. R. Chim. 2012, 15 , 969.
  • Mahesh, P. ; Guruswamy, K. ; Diwakar, B. S. ; Devi, B. R. ; Murthy, Y. L. N. ; Kollu, P. ; Pammi, S. V. N . Magnetically Separable Recyclable Nano-Ferrite Catalyst for the Synthesis of Acridinediones and Their Derivatives under Solvent-Free Conditions. Chem. Lett. 2015, 44 , 1386. DOI: 10.1246/cl.150503.
  • Binoyargha, D. ; Sibaji, N. ; Amarta, K. P . An Efficient ‘on-Water’ Synthesis of 1,4-Dihydropyridines Using Fe3O4@SiO2 Nanoparticles as a Reusable Catalyst. Tetrahedron Lett. 2014, 55 , 5236.
  • Shi, D. Q. ; Ni, S. N. ; Yang, F. ; Shi, J. W. ; Dou, G. L. ; Li, X. Y. ; Wang, X. S . An Efficient Synthesis of Polyhydroacridine Derivatives by the Three‐Component Reaction of Aldehydes, Amines and Dimedone in Ionic Liquid. J. Heterocycl. Chem. 2008, 45 , 653. DOI: 10.1002/jhet.5570450303.
  • Kumar, D. ; Sandhu, J. S . Efficient, Solvent-Free, Microwave-Enhanced Condensation of 5,5-Dimethyl-1,3-Cyclohexanedione with Aldehydes and Imines Using LiBr as Inexpensive, Mild Catalyst. Synth. Commun. 2010, 40 , 510. DOI: 10.1080/00397910902987792.
  • Venkatesan, K. ; Pujari, S. S. ; Srinivasan, K. V . Proline-Catalyzed Simple and Efficient Synthesis of 1,8-Dioxo-Decahydroacridines in Aqueous Ethanol Medium. Synth. Commun. 2008, 39 , 228. DOI: 10.1080/00397910802044306.
  • Niknam, K. ; Panahi, F. ; Saberi, D. ; Mohagheghnejad, M . Silica‐Bonded S‐Sulfonic Acid as Recyclable Catalyst for the Synthesis of 1,8‐Dioxo‐Decahydroacridines and 1,8‐Dioxo‐Octahydroxanthenes. J. Heterocyclic Chem. 2010, 47 , 292. DOI: 10.1002/jhet.303.
  • Shi, D. Q. ; Shi, J. W. ; Yao, H . Clean Synthesis of 9,10-Diarylacridine Derivatives in Aqueous Media. Chin. J. Org. Chem. 2009, 29 , 239.
  • Shen, W. ; Wang, L. M. ; Tian, H. ; Tang, J. ; Yu, J. J . Brønsted Acidic Imidazolium Salts Containing Perfluoroalkyl Tails Catalyzed One-Pot Synthesis of 1,8-Dioxo-Decahydroacridines in Water. J. Fluorine Chem. 2009, 130 , 522. DOI: 10.1016/j.jfluchem.2009.02.014.
  • Alinezhad, H. ; Tavakkoli, S. M . Efficient and Convenient Synthesis of 1,8-Dioxodecahydroacridine Derivatives Using Cu-Doped ZnO Nanocrystalline Powder as a Catalyst under Solvent-Free Conditions. Sci. World J. 2013, 2013 , 1–9. Article ID 575636, pages. DOI: 10.1155/2013/575636.
  • Nicolaou, K. C. ; Edmonds, D. J. ; Bulger, P. G . Cascade Reactions in Total Synthesis. Angew. Chem. Int. Ed. Engl. 2006, 45 , 7134DOI: 10.1002/anie.200601872.
  • Parsons, P. J. ; Penkett, C. S. ; Shell, A. J . Tandem Reactions in Organic Synthesis: Novel Strategies for Natural Product Elaboration and the Development of New Synthetic Methodology. Chem. Rev. 1996, 96 , 195. DOI: 10.1021/cr950023+.
  • Nicolaou, K. C. ; Montagnon, T. ; Snyder, S. A . Tandem Reactions, Cascade Sequences, and Biomimetic Strategies in Total Synthesis. Chem. Commun. 2003, 5 , 551. DOI: 10.1039/b209440c.
  • Behr, A. ; Vorholt, A. J. ; Ostrowski, K. A. ; Seidensticker, T . Towards Resource Efficient Chemistry: tandem Reactions with Renewable. Green Chem. 2014, 16 , 982. DOI: 10.1039/C3GC41960F.
  • Tietze, L. F . Domino Reactions in Organic Synthesis. Chem. Rev. 1996, 96 , 115 DOI: 10.1021/cr950027e.
  • Chanda, A. ; Fokin, V. V . Organic Synthesis “ "on water". Chem. Rev. 2009, 109 , 725DOI: 10.1021/cr800448q.
  • Ugi, I. ; Dömling, A. ; Hörl, W . Multicomponent Reactions in Organic Chemistry. Endeavour. 1994, 18 , 115. DOI: 10.1016/S0160-9327(05)80086-9.
  • Arafa, W. A. A. ; Ibrahim, H. M . A Sustainable Strategy for the Synthesis of Bis-2-Iminothiazolidin-4-Ones Utilizing Novel Series of Asymmetrically Substituted Bis-Thioureas as Viable Precursors. RSC Adv. 2018, 8 , 10516. DOI: 10.1039/C8RA01253A.
  • Kalidindi, S. B. ; Jagirdar, B. R . Nanocatalysis and Prospects of Green chemistry. ChemSusChem . 2012, 5 , 65DOI: 10.1002/cssc.201100377.
  • (a) J. H. Clark , Green chemistry: today (and tomorrow) Green Chem. 2006, 8, 17; DOI: 10.1039/B507207G. (b) C. J. Li and L. Chen , Organic chemistry in water. Chem. Soc. Rev. 2006, 35, 68; (c) V. Polshettiwar and R. S. Varma , Olefin ring closing metathesis and hydrosilylation reaction in aqueous medium by Grubbs second generation ruthenium catalyst. J. Org. Chem. 2008, 73, 7417.
  • (a) V. Polshettiwar and R. S. Varma , Non-Conventional Energy Sources for Green Synthesis in Water (Microwave, Ultrasound, and Photo), ChemInform , 2011, 42, 31; (b) V. Polshettiwar and R. S. Varma , Greener and sustainable approaches to the synthesis of pharmaceutically active heterocycles Current Opinion in Drug Discovery & Development , 2007, 10, 723. DOI: 10.1002/chin.201131236.
  • (a) G. Cravotto and P. Cintas , Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 2006, 18 , 180; (b) K. S. Suslick and G. J. Price , Annu. Rev. Mater. Sci . 1999, 29, 295. DOI: 10.1039/B503848K.
  • Chate, A. V. ; Rathod, U. B. ; Kshirsagar, J. S. ; Gaikwad, P. A. ; Mane, K. D. ; Mahajan, P. S. ; Nikam, M. D. ; Gill, C. H . Ultrasound Assisted Multicomponent Reactions: A Green Method for the Synthesis of N-Substituted 1,8-Dioxo-Decahydroacridines Using β-Cyclodextrin as a Supramolecular Reusable Catalyst in Water. Chin. J. Catal. 2016, 37 , 146. DOI: 10.1016/S1872-2067(15)61005-1.
  • Guo, Y. ; Zhang, H. ; Wang, Y. ; Liao, Z. ; Li, G. ; Chen, J . Controlled Growth and Photocatalytic Properties of CdS Nanocrystals Implanted in Layered Metal Hydroxide Matrixes. J. Phys. Chem. B. 2005, 109 , 21602. DOI: 10.1021/jp054400q.
  • Ma, Y. ; Qi, L. ; Ma, J. ; Cheng, H. ; Shen, W . Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir. 2003, 19 , 9079. DOI: 10.1021/la034994t.
  • Nag, A. ; Sapra, S. ; Nagamani, Sharma, C. A. ; Pradhan, N. ; Bhat, S. V. ; Sharma, D. D. A . A Study of Mn2+ Doping in CdS Nanocrystals. Chem. Mater. 2007, 19 , 3252. DOI: 10.1021/cm0702767.
  • Bryan, J. D. ; Gamelin, D. R . Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Prog. Inorg. Chem. 2005, 54 , 47.
  • Laguna, O. H. ; Pérez, A. ; Centeno, M. A. ; Odriozola, J. A . Synergy between Gold and Oxygen Vacancies in Gold Supported on Zr-Doped Ceria Catalysts for the CO Oxidation. Appl. Catal. B Environ. 2015, 176 , 385. DOI: 10.1016/j.apcatb.2015.04.019.
  • Liu, S. X. ; Qu, Z. P. ; Han, X. W. ; Sun, C. L . A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide. Catal. Today. 2004, 93 , 877. DOI: 10.1016/j.cattod.2004.06.097.
  • Verma, D. ; Sharma, V. ; Okram, G. S. ; Jain, S . Ultrasound-Assisted High-Yield Multicomponent Synthesis of Triazolo [1, 2-a] Indazole-Triones Using Silica-Coated ZnO Nanoparticles as a Heterogeneous Catalyst. Green Chem. 2017, 19 , 5885. DOI: 10.1039/C7GC03279J.
  • Silverstein, R. M. ; Bassler, G. C. ; Morrill, T. C . Spectrometric Identification of Organic Compounds , Wiley, New York, 1991, 26 , 813.
  • Shannon, R. D . Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A. 1976, A32 , 751. DOI: 10.1107/S0567739476001551.
  • Surib, N. A. ; Sim, L. C. ; Leong, K. H. ; Kuila, A. ; Saravanan, P. ; Lo, K. M. ; Ibrahim, S. ; Bahnemann, D. ; Jang, M . Ag+, Fe 3+ and Zn 2+-Intercalated Cadmium (ii)-Metal–Organic Frameworks for Enhanced Daylight Photocatalysis. RSC Adv. 2017, 7 , 51272. DOI: 10.1039/C7RA10034E.
  • Wu, L. ; Yu, J. C. ; Fu, X. Z . Characterization and Photocatalytic Mechanism of Nanosized CdS Coupled TiO2 Nanocrystals under Visible Light Irradiation. J. Mol. Catal. A: Chem. 2006, 244 , 25. DOI: 10.1016/j.molcata.2005.08.047.
  • Pawar, S. A. ; Patil, D. S. ; Patil, S. K. ; Awale, D. V. ; Devan, R. ; Ma, S. Y. ; Kolekar, S. S. ; Kim, J. ; Patil, P. S . Thiocyanate Functionalized Ionic Liquid Electrolyte for Photoelectrochemical Study of Cadmium Selenide Pebbles. Electrochim. Acta. 2014, 148 , 310. DOI: 10.1016/j.electacta.2014.10.047.
  • Baghchesara, M. A. ; Azimi, H. R. ; Shiravizadeh, A. G. ; Teridi, M. A. M. ; Yousefi, R . Improving the Intrinsic Properties of rGO Sheets by S-Doping and the Effects of rGO Improvements on the Photocatalytic Performance of Cu3Se2/rGO Nanocomposites. Appl. Surf. Sci. 2019, 466 , 401. DOI: 10.1016/j.apsusc.2018.10.082.
  • Tabar, M. B. ; Elahi, S. M. ; Ghoranneviss, M. ; Yousefi, R . Controlled Morphology of ZnSe Nanostructures by Varying Zn/Se Molar Ratio: The Effects of Different Morphologies on Optical Properties and Photocatalytic Performance. CrystEngComm. 2018, 20 , 4590. DOI: 10.1039/C8CE00775F.
  • Shirmardi, A. ; Teridi, M. A. M. ; Azimi, H. R. ; Basirun, W. J. ; Jamali-Sheini, F. ; Yousefi, R . Enhanced Photocatalytic Performance of ZnSe/PANI Nanocomposites for Degradation of Organic and Inorganic Pollutants. Appl. Surf. Sci. 2018, 462 , 730. DOI: 10.1016/j.apsusc.2018.06.252.
  • Mandal, P. ; Talwar, S. S. ; Major, S. S. ; Srinivasa, R. S . Orange-Red Luminescence from Cu Doped CdS Nanophosphor Prepared Using Mixed Langmuir–Blodgett Multilayers. J. Chem. Phys. 2008, 128 , 114703. DOI: 10.1063/1.2888930.
  • Li, D. ; Müller, M. B. ; Gilje, S. ; Kaner, R. B. ; Wallace, G. G . Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotech. 2008, 3 , 101. DOI: 10.1038/nnano.2007.451.
  • Sharma, V. ; Chotia, C. ; Tarachand, T. ; Ganesan, V. ; Okram, G. S . Influence of Particle Size and Dielectric Environment on the Dispersion Behaviour and Surface Plasmon in Nickel Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19 , 14096. DOI: 10.1039/C7CP01769C.
  • Sheik Mansoor, S. ; Aswin, K. ; Logaiya, K. ; Sudhan, S. P. N . Aqua-Mediated Synthesis of Acridinediones with Reusablesilica-Supported Sulfuric Acid as an Efficient Catalyst. J. Taibah Univ. Sci. 2014, 8 , 265. DOI: 10.1016/j.jtusci.2014.03.003.
  • Zarei, Z. ; Akhlaghinia, B . ZnII Doped and Immobilized on Functionalized Magnetic Hydrotalcite (Fe3O4/HT-SMTU-ZnII): a Novel, Green and Magnetically Recyclable Bifunctional Nanocatalyst for the One-Pot Multi-Component Synthesis of Acridinediones under Solvent-Free Conditions. New J. Chem. 2017, 41 , 15485. DOI: 10.1039/C7NJ03281A.
  • Tang, Z. Q. ; Chen, Y. ; Liu, C. N. ; Y.Cai, K. ; J.Tu, S . A Green Procedure for the Synthesis of 1, 8‐Dioxodecahydroacridine Derivatives under Microwave Irradiation in Aqueous Media without Catalyst. J. Heterocycl. Chem. 2010, 47 , 363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.