379
Views
11
CrossRef citations to date
0
Altmetric
Articles

Influence of wax inhibitor molecular weight: Fractionation and effect on crystallization of polydisperse waxes

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 1201-1216 | Received 28 Nov 2018, Accepted 28 Apr 2019, Published online: 01 Jul 2019

References

  • Huang, Z. ; Zheng, S. ; Fogler, H. S . Wax Deposition: Experimental Characterizations, Theoretical Modeling, and Field Practices . CRC Press: Boca Raton, 2015.
  • Zou, C. ; Zhai, G. ; Zhang, G. ; Wang, H. ; Zhang, G. ; Li, J. ; Wang, Z. ; Wen, Z. ; Ma, F. ; Liang, Y .; et al. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Pet. Explor. Dev. 2015, 42 , 14–28. DOI: 10.1016/S1876-3804(15)60002-7.
  • Kelland, M. A . Production Chemicals for the Oil and Gas Industry , 2nd ed.; CRC Press: Boca Raton, 2014.
  • Al-Yaari, M . Paraffin Wax Deposition: Mitigation and Removal Techniques . Society of Petroleum Engineers, 2011. Paper presented at the SPE Saudi Arabia section Young Professionals Technical Symposium held in Dhahran, Saudi Arabia, 14–16 March 2011.
  • Yang, F. ; Zhao, Y. ; Sjöblom, J. ; Li, C. ; Paso, K. G . Polymeric Wax Inhibitors and Pour Point Depressants for Waxy Crude Oils: A Critical Review. J. Dispersion Sci. Technol. 2015, 36 , 213–225. DOI: 10.1080/01932691.2014.901917.
  • Machado, A. L. d C. ; Lucas, E. F . Poly(Ethylene-co-Vinyl Acetate) (EVA) Copolymers as Modifiers of Oil Wax Crystallization. Pet. Sci. Technol. 1999, 17 , 1029–1041. DOI: 10.1080/10916469908949763.
  • Clarke, E. W . Crystal Types of Pure Hydrocarbons in the Paraffin Wax Range. Ind. Eng. Chem. 1951, 43 , 2526–2535. DOI: 10.1021/ie50503a037.
  • Oschmann, H.-J . Das Kristallisationsverhalten von Paraffinen in Abhängigkeit von ihrer Zusammensetzung sowie seine Beeinflussung durch Paraffininhibitoren. PhD Thesis, Technische Universität Clausthal, Papierflieger, 1998.
  • Geri, M. ; Venkatesan, R. ; Sambath, K. ; McKinley, G. H . Thermokinematic Memory and the Thixotropic Elasto-Viscoplasticity of Waxy Crude Oils. J. Rheol. 2017, 61 , 427–454. DOI: 10.1122/1.4978259.
  • Standard Test Method for Pour Point of Petroleum Products . In D97, ASTM International, 2017.
  • Zhao, Y. ; Paso, K. ; Kumar, L. ; Safieva, J. ; Sariman, M. Z. B. ; Sjöblom, J . Controlled Shear Stress and Controlled Shear Rate Nonoscillatory Rheological Methodologies for Gelation Point Determination. Energy Fuels 2013, 27 , 2025–2032. DOI: 10.1021/ef302059f.
  • Venkatesan, R. ; Singh, P. ; Fogler, H. S . Delineating the Pour Point and Gelation Temperature of Waxy Crude Oils. SPE J. 2004, 7 , 349–352.
  • Venkatesan, R. ; Nagarajan, N. R. ; Paso, K. ; Yi, Y. B. ; Sastry, A. M. ; Fogler, H. S . The Strength of Paraffin Gels Formed under Static and Flow Conditions. Chem. Eng. Sci. 2005, 60 , 3587–3598. DOI: 10.1016/j.ces.2005.02.045.
  • Venkatesan, R. ; Östlund, J.-A. ; Chawla, H. ; Wattana, P. ; Nydén, M. ; Fogler, H. S . The Effect of Asphaltenes on the Gelation of Waxy Oils. Energy Fuels 2003, 17 , 1630–1640. DOI: 10.1021/ef034013k.
  • Smith, P. B. ; Ramsden, R. M. J . The Prediction of Oil Gelation in Submarine Pipelines and the Pressure Required for Restarting Flow. SPE European Petroleum Conference, Society of Petroleum Engineers: London, United Kingdom, 1978.
  • Ariza-León, E. ; Molina-Velasco, D.-R. ; Chaves-Guerrero, A . Review of Studies on Asphaltene–Wax Interaction and the Effect Thereof on Crystallization. CT&F Cienc. Tecnol. Futuro 2014, 5 , 39–53. DOI: 10.29047/01225383.32.
  • Tinsley, J. F. ; Jahnke, J. P. ; Dettman, H. D. ; Prud’home, R. K . Waxy Gels with Asphaltenes 1: Characterization of Precipitation, Gelation, Yield Stress, and Morphology. Energy Fuels 2009, 23 , 2056–2064. DOI: 10.1021/ef800636f.
  • Kriz, P. ; Andersen, S. I . Effect of Asphaltenes on Crude Oil Wax Crystallization. Energy Fuels 2005, 19 , 948–953. DOI: 10.1021/ef049819e.
  • García, M. d C . Crude Oil Wax Crystallization. The Effect of Heavy n-Paraffins and Flocculated Asphaltenes. Energy Fuels 2000, 14 , 1043–1048. DOI: 10.1021/ef0000330.
  • Yang, X. ; Kilpatrick, P . Asphaltenes and Waxes Do Not Interact Synergistically and Coprecipitate in Solid Organic Deposits. Energy Fuels 2005, 19 , 1360–1375. DOI: 10.1021/ef050022c.
  • Oliveira, G. E. ; Mansur, C. R. E. ; Lucas, E. F. ; González, G. ; de Souza, W. F . The Effect of Asphaltenes, Naphthenic Acids, and Polymeric Inhibitors on the Pour Point of Paraffins Solutions. J. Dispersion Sci. Technol. 2007, 28 , 349–356. DOI: 10.1080/01932690601107526.
  • Yao, B. ; Li, C. ; Yang, F. ; Zhang, X. ; Mu, Z. ; Sun, G. ; Zhao, Y . Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 1. Effect of Wax Content and the Synergistic Mechanism. Energy Fuels 2018, 32 , 1567–1578. DOI: 10.1021/acs.energyfuels.7b03657.
  • Yao, B. ; Li, C. ; Yang, F. ; Zhang, X. ; Mu, Z. ; Sun, G. ; Liu, G. ; Zhao, Y . Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 2. Effect of Asphaltene Content. Energy & Fuels 2018, 32 , 5834–5845. DOI: 10.1021/acs.energyfuels.8b00720.
  • Duffy, D. ; Rodger, P . Wax Inhibition with Poly (Octadecyl Acrylate). Phys. Chem. Chem. Phys. 2002, 4 , 328–334. DOI: 10.1039/b106530k.
  • Zhang, J. ; Zhang, M. ; Wan, J. ; Li, W . Theoretical Study of the Prohibited Mechanism for Ethylene/Vinyl Acetate Co-Polymers to the Wax Crystal Growth. J. Phys. Chem. B. 2008, 112 , 36–43. DOI: 10.1021/jp073052k.
  • Monkenbusch, M. ; Schneiders, D. ; Richter, D. ; Willner, L. ; Leube, W. ; Fetters, L. J. ; Huang, J. S. ; Lin, M . Aggregation Behaviour of PE–PEP Copolymers and the Winterization of Diesel Fuel. Phys. B. 2000, 276-278 , 941–943. DOI: 10.1016/S0921-4526(99)01681-6.
  • Leube, W. ; Monkenbusch, M. ; Schneiders, D. ; Richter, D. ; Adamson, D. ; Fetters, L. ; Dounis, P. ; Lovegrove, R . Wax-Crystal Modification for Fuel Oils by Self-Aggregating Partially Crystallizable Hydrocarbon Block Copolymers. Energy Fuels 2000, 14 , 419–430. DOI: 10.1021/ef9901544.
  • Ashbaugh, H. S. ; Guo, X. ; Schwahn, D. ; Prud’homme, R. K. ; Richter, D. ; Fetters, L. J . Interaction of Paraffin Wax Gels with Ethylene/Vinyl Acetate Co-Polymers. Energy Fuels 2005, 19 , 138–144. DOI: 10.1021/ef049910i.
  • Radulescu, A. ; Schwahn, D. ; Monkenbusch, M. ; Fetters, L. J. ; Richter, D . Structural Study of the Influence of Partially Crystalline Poly(Ethylene Butene) Random Copolymers on Paraffin Crystallization in Dilute Solutions. J. Polym. Sci. B Polym. Phys. 2004, 42 , 3113–3132. DOI: 10.1002/polb.20185.
  • Pedersen, K. S. ; Rønningsen, H. P . Influence of Wax Inhibitors on Wax Appearance Temperature, Pour Point, and Viscosity of Waxy Crude Oils. Energy & Fuels 2003, 17 , 321–328. DOI: 10.1021/ef020142+.
  • Wang, K.-S. ; Wu, C.-H. ; Creek, J. L. ; Shuler, P. J. ; Tang, Y . Evaluation of Effects of Selected Wax Inhibitors on Wax Appearance and Disappearance Temperatures. Pet. Sci. Technol. 2003, 21 , 359–368. DOI: 10.1081/LFT-120018525.
  • Chen, W. ; Zhao, Z. ; Yin, C . The Interaction of Waxes with Pour Point Depressants. Fuel 2010, 89 , 1127–1132. DOI: 10.1016/j.fuel.2009.12.005.
  • Wei, B . Recent Advances on Mitigating Wax Problem Using Polymeric Wax Crystal Modifier. J. Petrol. Explor. Prod. Technol. 2015, 5 , 391–401. DOI: 10.1007/s13202-014-0146-6.
  • Wu, Y. ; Ni, G. ; Yang, F. ; Li, C. ; Dong, G . Modified Maleic Anhydride Co-Polymers as Pour-Point Depressants and Their Effects on Waxy Crude Oil Rheology. Energy Fuels 2012, 26 , 995–1001. DOI: 10.1021/ef201444b.
  • Yao, B. ; Li, C. ; Yang, F. ; Sjöblom, J. ; Zhang, Y. ; Norrman, J. ; Paso, K. ; Xiao, Z . Organically Modified Nano-Clay Facilitates Pour Point Depressing Activity of Polyoctadecylacrylate. Fuel 2016, 166 , 96–105. DOI: 10.1016/j.fuel.2015.10.114.
  • Yao, B. ; Li, C. ; Zhang, X. ; Yang, F. ; Sun, G. ; Zhao, Y . Performance Improvement of the Ethylene-Vinyl Acetate Copolymer (EVA) Pour Point Depressant by Small Dosage of the Amino-Functionalized Polymethylsilsesquioxane (PAMSQ) Microsphere. Fuel 2018, 220 , 167–176. DOI: 10.1016/j.fuel.2018.01.032.
  • Jing, G. ; Sun, Z. ; Tu, Z. ; Bian, X. ; Liang, Y . Influence of Different Vinyl Acetate Contents on the Properties of the Copolymer of Ethylene and Vinyl Acetate/Modified Nano-SiO2 Composite Pour-Point Depressant. Energy Fuels 2017, 31 , 5854–5859. DOI: 10.1021/acs.energyfuels.7b00189.
  • Norrman, J. ; Solberg, A. ; Sjöblom, J. ; Paso, K . Nanoparticles for Waxy Crudes: Effect of Polymer Coverage and the Effect on Wax Crystallization. Energy Fuels 2016, 30 , 5108–5114. DOI: 10.1021/acs.energyfuels.6b00286.
  • Yang, F. ; Paso, K. ; Norrman, J. ; Li, C. ; Oschmann, H. ; SjöBlom, J . Hydrophilic Nanoparticles Facilitate Wax Inhibition. Energy Fuels 2015, 29 , 1368–1374. DOI: 10.1021/ef502392g.
  • Borthakur, A. ; Chanda, D. ; Dutta Choudhury, S. R. ; Rao, K. V. ; Subrahmanyam, B . Alkyl Fumarate − Vinyl Acetate Copolymer as Flow Improver for High Waxy Indian Crude Oils. Energy Fuels 1996, 10 , 844–848. DOI: 10.1021/ef950237u.
  • Manka, J. S. ; Ziegler, K. L . Factors Affecting the Performance of Crude Oil Wax-Control Additives. SPE Production and Operations Symposium, Society of Petroleum Engineers: Oklahoma City, Oklahoma, 2001; p. 7.
  • Paso, K. ; Kompalla, T. ; Oschmann, H. J. ; Sjöblom, J . Rheological Degradation of Model Wax-Oil Gels. J. Dispersion Sci. Technol. 2009, 30 , 472–480. DOI: 10.1080/01932690802548924.
  • Morris, K. F. ; Johnson, C. S . Diffusion-Ordered Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc. 1992, 114 , 3139–3141. DOI: 10.1021/ja00034a071.
  • Johnson, C. S . Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: principles and Applications. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34 , 203–256. DOI: 10.1016/S0079-6565(99)00003-5.
  • Provencher, S. W . A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27 , 213–227. DOI: 10.1016/0010-4655(82)90173-4.
  • Jerschow, A. ; Müller, N . Convection Compensation in Gradient Enhanced Nuclear Magnetic Resonance Spectroscopy. J. Magn. Reson. 1998, 132 , 13–18. DOI: 10.1006/jmre.1998.1400.
  • Einstein, A . Über Die Von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung Von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Ann. Phys. 1905, 322 , 549–560. DOI: 10.1002/andp.19053220806.
  • Ruwoldt, J. ; Kurniawan, M. ; Oschmann, H.-J . Non-Linear Dependency of Wax Appearance Temperature on Cooling Rate. J. Pet. Sci. Eng. 2018, 165 , 114–126. DOI: 10.1016/j.petrol.2018.02.011.
  • Chen, J. ; Zhang, J. ; Li, H . Determining the Wax Content of Crude Oils by Using Differential Scanning Calorimetry. Thermochim. Acta 2004, 410 , 23–26. DOI: 10.1016/S0040-6031(03)00367-8.
  • Paso, K. ; Senra, M. ; Yi, Y. ; Sastry, A. M. ; Fogler, H. S . Paraffin Polydispersity Facilitates Mechanical Gelation. Ind. Eng. Chem. Res. 2005, 44 , 7242–7254. DOI: 10.1021/ie050325u.
  • Bossard, F. ; Moan, M. ; Aubry, T . Linear and Nonlinear Viscoelastic Behavior of Very Concentrated Plate-like Kaolin Suspensions. J. Rheol. 2007, 51 , 1253–1270. DOI: 10.1122/1.2790023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.