210
Views
15
CrossRef citations to date
0
Altmetric
Articles

A simple process of isolation microcrystalline cellulose using ultrasonic irradiation

, &
Pages 1217-1226 | Received 28 Nov 2018, Accepted 28 Apr 2019, Published online: 17 May 2019

References

  • Khan, A. ; Khan, R.-A. ; Salmieri, S. ; Le Tien, C. ; Riedl, B. ; Bouchard, J. ; Chauve, G. ; Tan, V. ; Kamal, M.-R. ; Lacroix, M . Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films. Carbohydr. Polym . 2012, 90 , 1601–1608. DOI: 10.1016/j.carbpol.2012.07.037.
  • Bertolino, V. ; Cavallaro, G. ; Lazzara, G. ; Merli, M. ; Milioto, S. ; Parisi, F. ; Sciascia, L . Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials. Ind. Eng. Chem. Res . 2016, 55 , 7373–7380. DOI: 10.1021/acs.iecr.6b01816.
  • Gorrasi, G. ; Bugatti, V. ; Vittoria, V . Pectins Filled with LDH-Antimicrobial Molecules: Preparation, Characterization and Physical Properties. Carbohydr. Polym . 2012, 89 , 132–137. DOI: 10.1016/j.carbpol.2012.02.061.
  • Cavallaro, G. ; Donato, D.-I. ; Lazzara, G. ; Milioto, S . Films of Halloysite Nanotubes Sandwiched between Two Layers of Biopolymer: From the Morphology to the Dielectric, Thermal, Transparency, and Wettability Properties. J. Phys. Chem. C . 2011, 115 , 20491–20498. DOI: 10.1021/jp207261r.
  • Lagaron, J.-M. ; Lopez-Rubio, A . Nanotechnology for Bioplastics: Opportunities, Challenges and Strategies. Trends Food Sci. Technol . 2011, 22 , 611–617. DOI: 10.1016/j.tifs.2011.01.007.
  • Gorrasi, G. ; Pantani, R. ; Murariu, M. ; Dubois, P . PLA/H Alloysite Nanocomposite Films: Water Vapor Barrier Properties and Specific Key Characteristics. Macromol. Mater. Eng . 2014, 299 , 104–115. DOI: 10.1002/mame.201200424.
  • Kennedy, J.-F . Cellulose and Its Derivatives: Chemistry, Biochemistry, and Applications ; Halsted Press: Ultimo, NSW, 1985.
  • Brown, A.-J . XLIII.-on an Acetic Ferment Which Forms Cellulose. J. Chem. Soc. Trans . 1886, 49 , 432–439. DOI: 10.1039/CT8864900432.
  • Li, J. ; Zhang, X. ; Zhang, M. ; Xiu, H. ; He, H . Optimization of Selective Acid Hydrolysis of Cellulose for Microcrystalline Cellulose Using FeCl3. BioResources 2014, 9 , 1334–1345.
  • Paximada, P. ; Tsouko, E. ; Kopsahelis, N. ; Koutinas, A.-A. ; Mandala, I . Bacterial Cellulose as Stabilizer of O/W Emulsions. Food Hydrocoll . 2016, 53 , 225–232. DOI: 10.1016/j.foodhyd.2014.12.003.
  • Huayjuljit, S. ; Su’uthai, S. ; Charuchinda, S . Poly (Vinyl Chloride) Film Filled with Microcrystalline Cellulose Prepared from Cotton Fabric Waste: Properties and Biodegradability Study. Waste Manag. Res . 2010, 28 , 109–117. DOI: 10.1177/0734242X09339324.
  • Trache, D. ; Hussin, M. H. ; Hui Chuin, C. T. ; Sabar, S. ; Fazita, M. R. N. ; Taiwo, O. F. A. ; Hassan, T. M. ; Haafiz, M. K. M . Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application-A Review. Int. J. Biol. Macromol . 2016, 93 , 789–804. DOI: 10.1016/j.ijbiomac.2016.09.056.
  • Jalaluddin, A. ; Araki, J. ; Gotoh, Y . Toward ‘Strong’ Green Nanocomposites: Polyvinyl Alcohol Reinforced with Extremely Oriented Cellulose Whiskers. Biomacromolecules 2011, 12 , 617–624. DOI: 10.1021/bm101280f.
  • Ma, X. ; Chang, P.-R. ; Yu, J . Properties of Biodegradable Thermoplastic Pea Starch/Carboxymethyl Cellulose and Pea Starch/Microcrystalline Cellulose Composites. Carbohydr. Polym . 2008, 72 , 369–375. DOI: 10.1016/j.carbpol.2007.09.002.
  • Zulkifli, N.-I. ; Samat, N. ; Anuar, H. ; Zainuddin, N . Mechanical Properties and Failure Modes of Recycled Polypropylene/Microcrystalline Cellulose Composites. Mater. Des . 2015, 69 , 114–123. DOI: 10.1016/j.matdes.2014.12.053.
  • Sun, X. ; Lu, C. ; Liu, Y. ; Zhang, W. ; Zhang, X . Melt-Processed Poly (Vinyl Alcohol) Composites Filled with Microcrystalline Cellulose from Waste Cotton Fabrics. Carbohydr. Polym . 2014, 101 , 642–649. DOI: 10.1016/j.carbpol.2013.09.088.
  • Hoyos, C.-G. ; Cristia, E. ; Vázquez, A . Effect of Cellulose Microcrystalline Particles on Properties of Cement Based Composites. Mater. Des . 2013, 51 , 810–818. DOI: 10.1016/j.matdes.2013.04.060.
  • Haafiz, M.-M. ; Hassan, A. ; Zakaria, Z. ; Inuwa, I.-M. ; Islam, M.-S. ; Jawaid, M . Properties of Polylactic Acid Composites Reinforced with Oil Palm Biomass Microcrystalline Cellulose. Carbohydr. Polym . 2013, 98 , 139–145. DOI: 10.1016/j.carbpol.2013.05.069.
  • Merci, A. ; Urbano, A. ; Grossmann, M.-V.-E. ; Tischer, C.-A. ; Mali, S . Properties of Microcrystalline Cellulose Extracted from Soybean Hulls by Reactive Extrusion. Food Res. Int . 2015, 73 , 38–43. DOI: 10.1016/j.foodres.2015.03.020.
  • Thoorens, G. ; Krier, F. ; Leclercq, B. ; Carlin, B. ; Evrard, B . Microcrystalline Cellulose, a Direct Compression Binder in a Quality by Design Environment-A Review. Int. J. Pharm . 2014, 473 , 64–72. DOI: 10.1016/j.ijpharm.2014.06.055.
  • Hussin, M.-H. ; Pohan, N.-A. ; Garba, Z.-N. ; Kassim, M.-J. ; Rahim, A.-A. ; Brosse, N. ; Yemloul, M. ; Fazita, M.-R.-N. ; Haafiz, M.-K.-M . Physicochemical of Microcrystalline Cellulose from Oil Palm Fronds as Potential Methylene Blue Adsorbents. Int. J. Biol. Macromol . 2016, 92 , 11–19. DOI: 10.1016/j.ijbiomac.2016.06.094.
  • Vijayalakshmi, K. ; Gomathi, T. ; Latha, S. ; Hajeeth, T. ; Sudha, P.-N . Removal of Copper (II) from Aqueous Solution Using Nanochitosan/Sodium Alginate/Microcrystalline Cellulose Beads. Int. J. Biol. Macromol . 2016, 82 , 440–452. DOI: 10.1016/j.ijbiomac.2015.09.070.
  • Hakansson, H. ; Ahlgren, P . Acid Hydrolysis of Some Industrial Pulps: Effect of Hydrolysis Conditions and Raw Material. Cellulose 2005, 12 , 177–183. DOI: 10.1007/s10570-004-1038-6.
  • Jacquet, N. ; Vanderghem, C. ; Danthine, S. ; Quiévy, N. ; Blecker, C. ; Devaux, J. ; Paquot, M . Influence of Steam Explosion on Physicochemical Properties and Hydrolysis Rate of Pure Cellulose Fibers. Bioresour. Technol . 2012, 121 , 221–227. DOI: 10.1016/j.biortech.2012.06.073.
  • Miao, C. ; Hamad, W.-Y . Cellulose Reinforced Polymer Composites and Nanocomposites: A Critical Review. Cellulose 2013, 20 , 2221–2262. DOI: 10.1007/s10570-013-0007-3.
  • Adel, A.-M. ; El-Wahab, Z.-H.-A. ; Ibrahim, A.-A. ; Al-Shemy, M.-T . Characterization of Microcrystalline Cellulose Prepared from Lignocellulosic Materials. Part II: Physicochemical Properties. Carbohydr. Polym . 2011, 83 , 676–687. DOI: 10.1016/j.carbpol.2010.08.039.
  • Lin, N. ; Dufresne, A . Supramolecular Hydrogels from in Situ Host–Guest Inclusion between Chemically Modified Cellulose Nanocrystals and Cyclodextrin. Biomacromolecules 2013, 14 , 871–880. DOI: 10.1021/bm301955k.
  • Ureña-Benavides, E.-E. ; Ao, G. ; Davis, V.-A. ; Kitchens, C.-L . Rheology and Phase Behavior of Lyotropic Cellulose Nanocrystal Suspensions. Macromolecules 2011, 44 , 8990–8998. DOI: 10.1021/ma201649f.
  • Beck-Candanedo, S. ; Roman, M. ; Gray, D.-G . Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6 , 1048–1054. DOI: 10.1021/bm049300p.
  • Reid, M.-S. ; Villalobos, M. ; Cranston, E.-D . Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir 2017, 33 , 1583–1598. DOI: 10.1021/acs.langmuir.6b03765.
  • Yu, H. ; Qin, Z. ; Liang, B. ; Liu, N. ; Zhou, Z. ; Chen, L . Facile Extraction of Thermally Stable Cellulose Nanocrystals with a High Yield of 93% through Hydrochloric Acid Hydrolysis under Hydrothermal Conditions. J. Mater. Chem. A . 2013, 1 , 3938–3944. DOI: 10.1039/c3ta01150j.
  • Roman, M. ; Winter, W. T . Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules 2004, 5 , 1671–1677. DOI: 10.1021/bm034519+.
  • Araki, J. ; Wada, M. ; Kuga, S. ; Okano, T . Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose. Colloids Surf. Physicochem. Eng. Asp . 1998, 142 , 75–82. DOI: 10.1016/S0927-7757(98)00404-X.
  • Martínez-Sanz, M. ; Lopez-Rubio, A. ; Lagaron, J.-M . Optimization of the Nanofabrication by Acid Hydrolysis of Bacterial Cellulose Nanowhiskers. Carbohydr. Polym . 2011, 85 , 228–236. DOI: 10.1016/j.carbpol.2011.02.021.
  • Yu, H.-Y. ; Qin, Z.-Y. ; Liu, L. ; Yang, X.-G. ; Zhou, Y. ; Yao, J.-M . Comparison of the Reinforcing Effects for Cellulose Nanocrystals Obtained by Sulfuric and Hydrochloric Acid Hydrolysis on the Mechanical and Thermal Properties of Bacterial Polyester. Compos. Sci. Technol . 2013, 87 , 22–28. DOI: 10.1016/j.compscitech.2013.07.024.
  • Lu, Q. ; Cai, Z. ; Lin, F. ; Tang, L. ; Wang, S. ; Huang, B . Extraction of Cellulose Nanocrystals with a High Yield of 88% by Simultaneous Mechanochemical Activation and Phosphotungstic Acid Hydrolysis. ACS Sustainable Chem. Eng . 2016, 4 , 2165–2172. DOI: 10.1021/acssuschemeng.5b01620.
  • Bang, J.-H. ; Suslick, K.-S . Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater . 2010, 22 , 1039–1059. DOI: 10.1002/adma.200904093.
  • Czechowska-Biskup, R. ; Rokita, B. ; Lotfy, S. ; Ulanski, P. ; Rosiak, J.-M . Degradation of Chitosan and Starch by 360-kHz Ultrasound. Carbohydr. Polym . 2005, 60 , 175–184. DOI: 10.1016/j.carbpol.2004.12.001.
  • Kasaai, M.-R. ; Arul, J. ; Charlet, G . Fragmentation of Chitosan by Ultrasonic Irradiation. Ultrason. Sonochem . 2008, 15 , 1001–1008. DOI: 10.1016/j.ultsonch.2008.04.005.
  • Yunus, R. ; Salleh, N.-F. ; Abdullah, N. ; Biak, D.-R.-A . Effect of Ultrasonic Pre-Treatment on Low Temperature Acid Hydrolysis of Oil Palm Empty Fruit Bunch. Bioresour. Technol . 2010, 101 , 9792–9796. DOI: 10.1016/j.biortech.2010.07.074.
  • Souza, H.-K. ; Campiña, J.-M. ; Sousa, A.-M. ; Silva, F. ; Gonçalves, M.-P . Ultrasound-Assisted Preparation of Size-Controlled Chitosan Nanoparticles: Characterization and Fabrication of Transparent Biofilms. Food Hydrocoll . 2013, 31 , 227–236. DOI: 10.1016/j.foodhyd.2012.10.005.
  • Li, j. ; Zhang, X. ; Zhang, M. ; Xiu, H. ; He, H . Ultrasonic Enhance Acid Hydrolysis Selectivity of Cellulose with HCl–FeCl3 as Catalyst. Carbohydr. Polym . 2015, 117 , 917–922. DOI: 10.1016/j.carbpol.2014.10.028.
  • Weissler, A . Formation of Hydrogen Peroxide by Ultrasonic Waves: Free Radicals. J. Am. Chem. Soc . 1959, 81 , 1077–1081. DOI: 10.1021/ja01514a015.
  • Weissler, A . Ultrasonic Hydroxylation in a Fluorescence Analysis for Microgram Quantities of Benzoic Acid. Nature 1962, 193 , 1070. DOI: 10.1038/1931070a0.
  • Wardhono, E.-Y. ; Wahyudi, H. ; Agustina, S. ; Oudet, F. ; Pinem, M.-P. ; Clausse, D. ; Saleh, K. ; Guénin, E . Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-Friendly Process of Isolating Bacterial Cellulose Nanocrystals. Nanomaterials 2018, 8 , 859. DOI: 10.3390/nano8100859.
  • Li, W. ; Yue, J. ; Liu, S . Preparation of Nanocrystalline Cellulose via Ultrasound and Its Reinforcement Capability for Poly (Vinyl Alcohol) Composites. Ultrason. Sonochem . 2012, 19 , 479–485. DOI: 10.1016/j.ultsonch.2011.11.007.
  • Lu, Q. ; Tang, L. ; Lin, F. ; Wang, S. ; Chen, Y. ; Chen, X. ; Huang, B . Preparation and Characterization of Cellulose Nanocrystals via Ultrasonication-Assisted FeCl 3-Catalyzed Hydrolysis. Cellulose 2014, 21 , 3497–3506. DOI: 10.1007/s10570-014-0376-2.
  • Suslick, K.-S. ; Price, G.-J . Applications of Ultrasound to Materials Chemistry. Annu. Rev. Mater. Sci . 1999, 29 , 295–326. DOI: 10.1146/annurev.matsci.29.1.295.
  • Park, S. ; Baker, J.-O. ; Himmel, M.-E. ; Parilla, P.-A. ; Johnson, D.-K . Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3 , 10. DOI: 10.1186/1754-6834-3-10.
  • Hult, E.-L. ; Iversen, T. ; Sugiyama, J . Characterization of the Supermolecular Structure of Cellulose in Wood Pulp Fibres. Cellulose 2003, 10 , 103–110. DOI: 10.1023/A:102408070.
  • Garvey, C.-J. ; Parker, I.-H. ; Simon, G.-P . On the Interpretation of X-Ray Diffraction Powder Patterns in Terms of the Nanostructure of Cellulose I Fibres. Macromol. Chem. Phys . 2005, 206 , 1568–1575. DOI: 10.1002/macp.200500008.
  • He, J. ; Cui, S. ; Wang, S . Preparation and Crystalline Analysis of High-Grade Bamboo Dissolving Pulp for Cellulose Acetate. J. Appl. Polym. Sci . 2008, 107 , 1029–1038. DOI: 10.1002/app.27061.
  • Nishiyama, Y. ; Sugiyama, J. ; Chanzy, H. ; Langan, P . Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-Ray and Neutron Fiber Diffraction. J. Am. Chem. Soc . 2003, 125 , 14300–14306. DOI: 10.1021/ja037055w.
  • Henrique, M.-A. ; Neto, W.-P.-F. ; Silvério, H.-A. ; Martins, D.-F. ; Gurgel, L.-V.-A. ; Barud, H.-S. ; Morais, L.-C. ; Pasquini, D . Kinetic Study of the Thermal Decomposition of Cellulose Nanocrystals with Different Polymorphs, Cellulose I and II, Extracted from Different Sources and Using Different Types of Acids. Ind. Crops Prod . 2015, 76 , 128–140. DOI: 10.1016/j.indcrop.2015.06.048.
  • Kondo, T . The Assignment of IR Absorption Bands Due to Free Hydroxyl Groups in Cellulose. Cellulose 1997, 4 , 281–292. DOI: 10.1023/A:1018448109214.
  • Börjesson, M. ; Westman, G . Crystalline Nanocellulose—Preparation, Modification, and Properties. In Cellulose-Fundamental Aspects and Current Trends ; Amsterdam, The Netherlands: InTech, 2015.
  • Chang, W.-S. ; Chen, H.-H . Physical Properties of Bacterial Cellulose Composites for Wound Dressings. Food Hydrocoll . 2016, 53 , 75–83. DOI: 10.1016/j.foodhyd.2014.12.009.
  • Kalita, R.-D. ; Nath, Y. ; Ochubiojo, M.-E. ; Buragohain, A.-K . Extraction and Characterization of Microcrystalline Cellulose from Fodder Grass; Setaria Glauca (L) P. Beauv, and Its Potential as a Drug Delivery Vehicle for Isoniazid, a First Line Antituberculosis Drug. Colloids Surf. B . 2013, 108 , 85–89. DOI: 10.1016/j.colsurfb.2013.02.016.
  • AAkerholm, M. ; Hinterstoisser, B. ; Salmén, L . Characterization of the Crystalline Structure of Cellulose Using Static and Dynamic FT-IR Spectroscopy. Carbohydr. Res . 2004, 339 , 569–578. DOI: 10.1016/j.carres.2003.11.012.
  • Azubuike, C.-P. ; Okhamafe, A.-O . Physicochemical, Spectroscopic and Thermal Properties of Microcrystalline Cellulose Derived from Corn Cobs. Int. J. Recycling Org. Waste Agric . 2012, 1 , 9–14. DOI: 10.1186/2251-7715-1-9.
  • Karim, M.-Z. ; Chowdhury, Z.-Z. ; Hamid, S.-B.-A. ; Ali, M.-E . Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst. Materials 2014, 7 , 6982–6999. DOI: 10.3390/ma7106982.
  • Haafiz, M.-M. ; Eichhorn, S.-J. ; Hassan, A. ; Jawaid, M . Isolation and Characterization of Microcrystalline Cellulose from Oil Palm Biomass Residue. Carbohydr. Polym . 2013, 93 , 628–634. DOI: 10.1016/j.carbpol.2013.01.035.
  • Gregorova, A . Application of Differential Scanning Calorimetry to the Characterization of Biopolymers. In Applications of Calorimetry in a Wide Context-Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry ; Hoboken, NJ: InTech, 2013.
  • Bertran, M.-S. ; Dale, B.-E . Determination of Cellulose Accessibility by Differential Scanning Calorimetry. J. Appl. Polym. Sci . 1986, 32 , 4241–4253. DOI: 10.1002/app.1986.070320335.
  • Ciolacu, D. ; Ciolacu, F. ; Popa, V.-I . Amorphous Cellulose—Structure and Characterization. Cellul. Chem. Technol . 2011, 45 , 13–21.
  • Jonoobi, M. ; Oladi, R. ; Davoudpour, Y. ; Oksman, K. ; Dufresne, A. ; Hamzeh, Y. ; Davoodi, R . Different Preparation Methods and Properties of Nanostructured Cellulose from Various Natural Resources and Residues: A Review. Cellulose 2015, 22 , 935–969. DOI: 10.1007/s10570-015-0551-0.
  • Iguchi, M. ; Yamanaka, S. ; Budhiono, A . Bacterial Cellulose—A Masterpiece of Nature’s Arts. J. Mater. Sci . 2000, 35 , 261–270. DOI: 10.1023/A:1004775229149.
  • Taghizadeh, M.-T. ; Mehrdad, A . Calculation of the Rate Constant for the Ultrasonic Degradation of Aqueous Solutions of Polyvinyl Alcohol by Viscometry. Ultrason. Sonochem . 2003, 10 , 309–313. DOI: 10.1016/S1350-4177(03)00110-X.
  • Li, Y. ; Li, J. ; Guo, S. ; Li, H . Mechanochemical Degradation Kinetics of High-Density Polyethylene Melt and Its Mechanism in the Presence of Ultrasonic Irradiation. Ultrason. Sonochem . 2005, 12 , 183–189. DOI: 10.1016/j.ultsonch.2003.10.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.