245
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The stability and surface activity of environmentally responsive surface-modified silica nanoparticles: the importance of hydrophobicity

&
Pages 1299-1310 | Received 19 Feb 2019, Accepted 04 May 2019, Published online: 27 May 2019

References

  • Peng, B.; Zhang, L.; Luo, J.; Wang, P.; Ding, B.; Zeng, M.; Cheng, Z. A Review of Nanomaterials for Nanofluid Enhanced Oil Recovery. RSC Adv. 2017, 7, 32246–32254. DOI: 10.1039/C7RA05592G.
  • Li, K.; Wang, D.; Jiang, S. Review on Enhanced Oil Recovery by Nanofluids. Oil Gas Sci. Technol. 2018, 73, 37. DOI: 10.2516/ogst/2018025.
  • Negin, C.; Ali, S.; Xie, Q. Application of Nanotechnology for Enhancing Oil Recovery–A Review. Petroleum 2016, 2, 324–333. DOI: 10.1016/j.petlm.2016.10.002.
  • Bera, A.; Belhaj, H. Application of nanotechnology by Means of Nanoparticles and Nanodispersions in Oil recovery-A Comprehensive Review. J. Nat. Gas Sci. Eng. 2016, 34, 1284–1309. DOI: 10.1016/j.jngse.2016.08.023.
  • Mohammed, M.; Babadagli, T. Wettability Alteration: A Comprehensive Review of Materials/Methods and Testing the Selected Ones on Heavy-Oil Containing Oil-Wet Systems. Adv. Colloid Interface Sci. 2015, 220, 54–77. DOI: 10.1016/j.cis.2015.02.006.
  • Al-Anssari, S.; Barifcani, A.; Wang, S.; Maxim, L.; Iglauer, S. Wettability Alteration of Oil-Wet Carbonate by Silica Nanofluid. J. Colloid Interface Sci. 2016, 461, 435–442. DOI: 10.1016/j.jcis.2015.09.051.
  • Hashemi, R.; Nassar, N. N.; Almao, P. P. Nanoparticle Technology for Heavy Oil in-Situ Upgrading and Recovery Enhancement: Opportunities and Challenges. Appl. Energy 2014, 133, 374–387. DOI: 10.1016/j.apenergy.2014.07.069.
  • Hendraningrat, L.; Li, S.; Torsaeter, O. A Coreflood Investigation of Nanofluid Enhanced Oil Recovery. J. Petrol. Sci. Eng. 2013, 111, 128–138. DOI: 10.1016/j.petrol.2013.07.003.
  • Zhang, T.; Davidson, D.; Bryant, S. L.; Huh, C. In Nanoparticle-stabilized Emulsions for Applications in Enhanced Oil Recovery, SPE Improved Oil Recovery Symposium, 2010; Society of Petroleum Engineers: 2010.
  • Binks, B. P.; Whitby, C. P. Silica Particle-Stabilized Emulsions of Silicone Oil and Water: aspects of Emulsification. Langmuir 2004, 20, 1130–1137. DOI: 10.1021/la0303557.
  • Luo, D.; Wang, F.; Zhu, J.; Cao, F.; Liu, Y.; Li, X.; Willson, R. C.; Yang, Z.; Chu, C.-W.; Ren, Z. Nanofluid of Graphene-based Amphiphilic Janus Nanosheets for Tertiary or Enhanced Oil Recovery: High Performance at Low Concentration. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 7711–7716. DOI: 10.1073/pnas.1608135113.
  • ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer‐Coated Nanoparticles for Enhanced Oil Recovery. J. Appl. Polym. Sci. 2014, 131, 40576.
  • Qi, L.; ShamsiJazeyi, H.; Ruan, G.; Mann, J. A.; Lin, Y.-H.; Song, C.; Ma, Y.; Wang, L.; Tour, J. M.; Hirasaki, G. J. Segregation of Amphiphilic Polymer-Coated Nanoparticles to Bicontinuous Oil/Water Microemulsion Phases. Energy Fuels 2017, 31, 1339–1346. DOI: 10.1021/acs.energyfuels.6b02687.
  • Weston, J.; Jentoft, R.; Grady, B.; Resasco, D.; Harwell, J. Silica Nanoparticle Wettability: Characterization and Effects on the Emulsion Properties. Ind. Eng. Chem. Res. 2015, 54, 4274–4284. DOI: 10.1021/ie504311p.
  • Simovic, S.; Prestidge, C. A. Nanoparticles of Varying Hydrophobicity at the Emulsion Droplet − Water Interface: Adsorption and Coalescence Stability. Langmuir 2004, 20, 8357–8365. DOI: 10.1021/la0491807.
  • Zhao, M.; Wang, S.; Dai, C. A New Insight into the Pressure‐Decreasing Mechanism of Hydrophobic Silica Nanoparticles Modified by n‐Propyltrichlorosilane. J. Surfact. Deterg. 2017, 20, 873–880. DOI: 10.1007/s11743-017-1966-4.
  • Zhao, M.; Lv, W.; Li, Y.; Dai, C.; Zhou, H.; Song, X.; Wu, Y. A Study on Preparation and Stabilizing Mechanism of Hydrophobic Silica Nanofluids. Materials 2018, 11, 1385. DOI: 10.3390/ma11081385.
  • Dai, C.; Li, H.; Zhao, M.; Wu, Y.; You, Q.; Sun, Y.; Zhao, G.; Xu, K. Emulsion Behavior Control and Stability Study through Decorating Silica Nano-Particle with Dimethyldodecylamine Oxide at n-Heptane/Water Interface. Chem. Eng. Sci. 2018, 179, 73–82. DOI: 10.1016/j.ces.2018.01.005.
  • Zhao, B.; Zhu, L. Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials. Macromolecules 2009, 42, 9369–9383. DOI: 10.1021/ma902042x.
  • Wang, Y.; Fan, D.; He, J.; Yang, Y. Silica Nanoparticle Covered with Mixed Polymer Brushes as Janus Particles at Water/Oil Interface. Colloid Polym. Sci. 2011, 289, 1885–1894. DOI: 10.1007/s00396-011-2506-9.
  • Poggi, E.; Gohy, J.-F. Janus Particles: From Synthesis to Application. Colloid Polym. Sci. 2017, 295, 2083–2108. DOI: 10.1007/s00396-017-4192-8.
  • Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; et al. Emerging Applications of Stimuli-Responsive Polymer Materials. Nature Mater. 2010, 9, 101–113. DOI: 10.1038/nmat2614.
  • Behzadi, A.; Mohammadi, A. Environmentally Responsive Surface-Modified Silica Nanoparticles for Enhanced Oil Recovery. J. Nanoparticle Res. 2016, 18, 1–19. DOI: 10.1007/s11051-016-3580-1.
  • Choi, S. K.; Son, H.; Kim, H. T.; Kim, J. W. Nanofluid Enhanced Oil Recovery Using Hydrophobically Associative Zwitterionic Polymer-Coated Silica Nanoparticles. Energy Fuels 2017, 31, 7777–7782. DOI: 10.1021/acs.energyfuels.7b00455.
  • Liu, P.; Niu, L.; Li, X.; Zhang, Z. Environmental Response Nanosilica for Reducing the Pressure of Water Injection in Ultra-Low Permeability Reservoirs. J. Nanoparticle Res. 2017, 19, 390. DOI: 10.1007/s11051-017-4086-1.
  • Klint, A. Amphiphilic Surface Modification of Colloidal Silica Sols. Chalmers tekniska högskola, Göteborg, 2011.
  • Törncrona, A.; Holmberg, K.; Bordes, R. Modified Silica Particles. In Google Patents, 2014.
  • Yu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. 2012, 2012, 1. DOI: 10.1155/2012/435873.
  • Berry, J. D.; Neeson, M. J.; Dagastine, R. R.; Chan, D. Y.; Tabor, R. F. Measurement of Surface and Interfacial Tension Using Pendant Drop Tensiometry. J. Colloid Interface Sci. 2015, 454, 226–237. DOI: 10.1016/j.jcis.2015.05.012.
  • Yuan, Y.; Lee, T. R. Contact Angle and Wetting Properties. In Surface Science Techniques, Springer: Berlin, 2013; pp 3–34.
  • Bagwe, R. P.; Hilliard, L. R.; Tan, W. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 2006, 22, 4357–4362. DOI: 10.1021/la052797j.
  • Al-Anssari, S.; Arif, M.; Wang, S.; Barifcani, A.; Iglauer, S. Stabilising Nanofluids in Saline Environments. J. Colloid Interface Sci. 2017, 508, 222–229. DOI: 10.1016/j.jcis.2017.08.043.
  • Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions. Cambridge University Press: Cambridge, 1989.
  • Zhou, J.; Ralston, J.; Sedev, R.; Beattie, D. A. Functionalized Gold Nanoparticles: Synthesis, Structure and Colloid Stability. J. Colloid Interface Sci. 2009, 331, 251–262. DOI: 10.1016/j.jcis.2008.12.002.
  • Kim, J. U.; Matsen, M. W. Interaction between Polymer-Grafted Particles. Macromolecules 2008, 41, 4435–4443. DOI: 10.1021/ma8002856.
  • Worthen, A. J.; Tran, V.; Cornell, K. A.; Truskett, T. M.; Johnston, K. P. Steric Stabilization of Nanoparticles with Grafted Low Molecular Weight Ligands in Highly Concentrated Brines Including Divalent Ions. Soft Matter. 2016, 12, 2025–2039. DOI: 10.1039/C5SM02787J.
  • Hunter, R. J. Foundations of Colloid Science. Oxford University Press: Oxford, 2001.
  • Ferdous, S.; Ioannidis, M. A.; Henneke, D. Adsorption Kinetics of Alkanethiol-Capped Gold Nanoparticles at the Hexane–Water Interface. J. Nanopart. Res. 2011, 13, 6579–6589. DOI: 10.1007/s11051-011-0565-y.
  • Isa, L.; Amstad, E.; Schwenke, K.; Del Gado, E.; Ilg, P.; Kröger, M.; Reimhult, E. Adsorption of Core-Shell Nanoparticles at Liquid–Liquid Interfaces. Soft Matter. 2011, 7, 7663–7675. DOI: 10.1039/c1sm05407d.
  • Isa, L.; Calzolari, D. C.; Pontoni, D.; Gillich, T.; Nelson, A.; Zirbs, R.; Sánchez-Ferrer, A.; Mezzenga, R.; Reimhult, E. Core–Shell Nanoparticle Monolayers at Planar Liquid–Liquid Interfaces: Effects of Polymer Architecture on the Interface Microstructure. Soft Matter. 2013, 9, 3789–3797. DOI: 10.1039/c3sm27367a.
  • Zell, Z. A.; Isa, L.; Ilg, P.; Leal, L. G.; Squires, T. M. Adsorption Energies of Poly (Ethylene Oxide)-Based Surfactants and Nanoparticles on an Air–Water Surface. Langmuir 2014, 30, 110–119. DOI: 10.1021/la404233a.
  • Udayana Ranatunga, R.; Kalescky, R. J.; Chiu, C-c.; Nielsen, S. O. Molecular Dynamics Simulations of Surfactant Functionalized Nanoparticles in the Vicinity of an Oil/Water Interface. J. Phys. Chem. C. 2010, 114, 12151–12157. DOI: 10.1021/jp105355y.
  • Schwenke, K.; Isa, L.; Cheung, D. L.; Del Gado, E. Conformations and Effective Interactions of Polymer-Coated Nanoparticles at Liquid Interfaces. Langmuir 2014, 30, 12578–12586. DOI: 10.1021/la503379z.
  • Huibers, B. M.; Pales, A. R.; Bai, L.; Li, C.; Mu, L.; Ladner, D.; Daigle, H.; Darnault, C. J. Wettability Alteration of Sandstones by Silica Nanoparticle Dispersions in Light and Heavy Crude Oil. J. Nanoparticle Res. 2017, 19, 323. DOI: 10.1007/s11051-017-4011-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.