150
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced brilliant blue FCF adsorption using microwave-hydrothermal synthesized hydroxyapatite nanoparticles

, , &
Pages 1346-1355 | Received 13 Mar 2019, Accepted 10 May 2019, Published online: 04 Jun 2019

References

  • Pinedo-Hernández, S.; Díaz-Nava, C.; Solache-Ríos, M. Sorption Behavior of Brilliant Blue FCF by a Fe-Zeolitic Tuff. Water. Air. Soil Pollut. 2012, 223, 467–475. DOI:10.1007/s11270-011-0877-7.
  • Mittal, A. Use of Hen Feathers as Potential Adsorbent for the Removal of a Hazardous Dye, Brilliant Blue FCF, from Wastewater. J. Hazard. Mater. 2006, 128, 233–239. DOI:10.1016/j.jhazmat.2005.08.043.
  • Flury, M.; Flühler, H. Brilliant Blue FCF as a Dye Tracer for Solute Transport Studies-a Toxicological Overview. J. Environ. Qual. 1994, 23, 1108–1112. DOI:10.2134/jeq1994.00472425002300050037x.
  • Germán-Heins, J.; Flury, M. Sorption of Brilliant Blue FCF in Soils as Affected by pH and Ionic Strength. Geoderma 2000, 97, 87–101. DOI:10.1016/S0016-7061(00)00027-6.
  • Zhou, X.; Liu, G.; Yu, J.; Fan, W. Surface Plasmon Resonance-Mediated Photocatalysis by Noble Metal-Based Composites under Visible Light. J. Mater. Chem. 2012, 22, 21337–21354. DOI:10.1039/c2jm31902k.
  • An, S. J.; Sun, Y. M. Test of Dyeing Wastewater Adsorption by Sugarcane Residues. Industr. Water Wastewater 2007, 38, 81–83. (in Chinese)
  • Gosetti, F.; Gianotti, V.; Angioi, S.; Polati, S.; Marengo, E.; Gennaro, M. C. Oxidative Degradation of Food Dye E133 Brilliant Blue FCF: liquid Chromatography-Electrospray Mass Spectrometry Identification of the Degradation Pathway. J. Chromatogr. A. 2004, 1054, 379–387. DOI:10.1016/j.chroma.2004.07.106.
  • Naghizadeh, A.; Ghafouri, M. Synthesis and Performance Evaluation of Chitosan Prepared from Persian Gulf Shrimp Shell in Removal of Reactive Blue 29 Dye from Aqueous Solution (Isotherm, Thermodynamic and Kinetic Study). Iran. J. Chem. Chem. Eng 2017, 36, 25–36.
  • Dehghani, M. H.; Naghizadeh, A.; Rashidi, A.; Derakhshani, E. Adsorption of Reactive Blue 29 Dye from Aqueous Solution by Multiwall Carbon Nanotubes. Desal. Water Treatm 2013, 51, 7655–7662. DOI:10.1080/19443994.2013.791772.
  • Naghizadeh, A.; Kamranifar, M.; Yari, A. R.; Mohammadi, M. J. Equilibrium and Kinetics Study of Reactive Dyes Removal from Aqueous Solutions by Bentonite Nanoparticles. Dwt. 2017, 97, 329–337. DOI:10.5004/dwt.2017.21687.
  • Kamranifar, M.; Naghizadeh, A. Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics. Iran. J. Chem. Chem. Eng 2017, 36, 127–137.
  • Hernández-Hernández, K. A.; Solache-Ríos, M.; Díaz-Nava, M. C. Removal of Brilliant Blue FCF from Aqueous Solutions Using an Unmodified and Iron-Modified Bentonite and the Thermodynamic Parameters of the Process. Water, Air, Soil Poll 2013, 224, 1562. DOI:10.1007/s11270-013-1562-9.
  • Wu, Z.; Joo, H.; Lee, K. Kinetics and Thermodynamics of the Organic Dye Adsorption on the Mesoporous Hybrid Xerogel. Chem. Eng. J 2005, 112, 227–236. DOI:10.1016/j.cej.2005.07.011.
  • Gupta, V. K.; Mittal, A.; Krishnan, L.; Mittal, J. Adsorption Treatment and Recovery of the Hazardous Dye, Brilliant Blue FCF, over Bottom Ash and de-Oiled Soya. J. Colloid. Interf. Sci 2006, 293, 16–26. DOI:10.1016/j.jcis.2005.06.021.
  • Wei, W.; Yang, L.; Zhong, W. H.; Li, S. Y.; Cui, J.; Z. G. Fast, W. Removal of Methylene Blue from Aqueous Solution by Adsorption onto Poorly Crystalline Hydroxyapatite Nanoparticles, Dig. J. Nanomater. Bios 2015, 10, 1343–1363.
  • Oladipo, A. A.; Gazi, M. Uptake of Ni2+ and Rhodamine B by Nano Hydroxyapatite/Alginate Composite Beads: batch and Continuous-Flow Systems. Toxicol. Environ. Chem 2016, 98, 189–203. DOI:10.1080/02772248.2015.1115506.
  • Ferraz, M. P.; Monteiro, F. J.; Manuel, C. M. Hydroxyapatite Nanoparticles: A Review of Preparation Methodologies. J. Appl. Biomater. Biomech 2004, 2, 74–80.
  • Fihri, A.; Len, C.; Varma, R. S.; Solhy, A. Hydroxyapatite: A Review of Syntheses, Structure and Applications in Heterogeneous Catalysis. Coordin. Chem. Rev 2017, 347, 48–76. DOI:10.1016/j.ccr.2017.06.009.
  • Wang, Q.; Zheng, H.; Long, Y.; Zhang, L.; Gao, M.; Bai, W. Microwave-Hydrothermal Synthesis of Fluorescent Carbon Dots from Graphite Oxide. Carbon 2011, 49, 3134–3140. DOI:10.1016/j.carbon.2011.03.041.
  • Katsuki, H.; Furuta, S.; Komarneni, S. Microwave versus Conventional Hydrothermal Synthesis of Hydroxyapatite Crystals from Gypsum. J. Am. Ceram. Soc 2004, 82, 2257–2259. DOI:10.1111/j.1151-2916.1999.tb02073.x.
  • Han, J. K.; Song, H. Y.; Saito, F.; Lee, B. T. Synthesis of High Purity Nano-Sized Hydroxyapatite Powder by Microwave-Hydrothermal Method. Mater. Chem. Phys 2006, 99, 235–239. DOI:10.1016/j.matchemphys.2005.10.017.
  • Milonjić, S. K.; Ruvarac, A. L.; Šušić, M. V. The Heat of Immersion of Natural Magnetite in Aqueous Solutions. Thermochim. Acta 1975, 11, 261–266. DOI:10.1016/0040-6031(75)85095-7.
  • Chen, F.; Huang, P.; Zhu, Y. J.; Wu, J.; Zhang, C. L.; Cui, D. X. The Photoluminescence, Drug Delivery and Imaging Properties of Multifunctional Eu3+/Gd3+ Dual-Doped Hydroxyapatite Nanorods. Biomaterials 2011, 32, 9031–9039. DOI:10.1016/j.biomaterials.2011.08.032.
  • Silva, V. M.; Quadros, P. A.; Laranjeira, P. E.; Dias, M. M.; Lopes, J. C. A Novel Continuous Industrial Process for Producing Hydroxyapatite Nanoparticles. J. Disper. Sci. Technol 2008, 29, 542–547. DOI:10.1080/01932690701728924.
  • Wang, G.; Qi, J.; Wang, S.; Wei, Z.; Li, S.; Cui, J.; Wei, W. Surface-Bound Humic Acid Increased Rhodamine B Adsorption on Nanosized Hydroxyapatite. J. Disper. Sci. Technol 2017, 38, 632–641. DOI:10.1080/01932691.2016.1185729.
  • Wang, Y. Z.; Fu, Y. Microwave-Hydrothermal Synthesis and Characterization of Hydroxyapatite Nanocrystallites. Mater. Lett 2011, 65, 3388–3390. DOI:10.1016/j.matlet.2011.07.095.
  • Eren, Z.; Acar, F. N. Adsorption of Reactive Black 5 from an Aqueous Solution: equilibrium and Kinetic Studies. Desalination 2006, 194, 1–10. DOI:10.1016/j.desal.2005.10.022.
  • Namasivayam, C.; Yamuna, R.; Arasi, D. Removal of Acid Violet from Wastewater by Adsorption on Waste Red Mud. Environ. Geol 2002, 37, 2421–2431. DOI:10.1081/SS-120003521.
  • Ketelsen, H.; Meyer-Windel, S. Adsorption of Brilliant Blue FCF by Soils. Geoderma 1999, 90, 131–145. DOI:10.1016/S0016-7061(98)00119-0.
  • Rodiguez, M. H.; Yperman, J.; Carleer, R.; Maggen, J.; Dadi, D.; Gryglewicz, G.; Calvis, A. O. Adsorption of Ni (II) on Spent Coffee and Coffee Husk Based Activated Carbon. J.Environ. Chem. Eng 2018, 6, 1161–1170. DOI:10.1016/j.jece.2017.12.045.
  • Ahmad, M. A.; Ahmad, N.; Bello, O. S. Adsorption Kinetic Studies for the Removal of Synthetic Dye Using Durian Seed Activated Carbon. J. Disper. Sci. Technol 2015, 36, 670–684. DOI:10.1080/01932691.2014.913983.
  • Naghizadeh, A.; Nabizadeh, R. Removal of Reactive Blue 29 Dye by Adsorption on Modified Chitosan in the Presence of Hydrogen Peroxide. Environ. Prot. Eng 2016, 42, 149–168.
  • Naghizadeh, A.; Ghafouri, M.; Jafari, A. Investigation of Equilibrium, Kinetics and Thermodynamics of Extracted Chitin from Shrimp Shell in Reactive Blue 29 (RB-29) Removal from Aqueous Solutions. Dwt. 2017, 70, 355–363. DOI:10.5004/dwt.2017.20471.
  • Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile Preparation of Amino Functionalized Graphene Oxide Decorated with Fe3O4 Nanoparticles for the Adsorption of Cr (VI). Appl. Surf. Sci 2016, 384, 1–9. DOI:10.1016/j.apsusc.2016.05.022.
  • Naghizadeh, A.; Momeni, F.; Derakhshani, E.; Kamranifar, M. Humic Acid Removal Efficiency from Aqueous Solutions Using Graphene and Graphene Oxide Nanoparticles. Dwt. 2017, 100, 116–125. DOI:10.5004/dwt.2017.21793.
  • Njoku, V. O.; Islam, M. A.; Asif, M.; Hameed, B. H. Adsorption of 2, 4-Dichlorophenoxyacetic Acid by Mesoporous Activated Carbon Prepared from H3PO4-Activated Langsat Empty Fruit Bunch. J. Environ. Manage 2015, 154, 138–144. DOI:10.1016/j.jenvman.2015.02.002.
  • Garg, V. K.; Gupta, R.; Kumar, R.; Gupta, R. K. Adsorption of Chromium from Aqueous Solution on Treated Sawdust. Bioresource Technol 2004, 92, 79–81. DOI:10.1016/j.biortech.2003.07.004.
  • Chih-Huang, W.; Yao-Tung, L.; Tai-Wei, T. Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pineapple Leaf Powder. J. Hazard. Mater 2009, 170, 417–424. DOI:10.1016/j.jhazmat.2009.04.080.
  • Hu, X-j.; Liu, Y-g.; Wang, H.; Zeng, G-m.; Hu, X.; Guo, Y-m.; Li, T-t.; Chen, A-w.; Jiang, L-h.; Guo, F-y. Adsorption of Copper by Magnetic Graphene Oxide-Supported β-Cyclodextrin: Effects of pH, Ionic Strength, Background Electrolytes, and Citric Acid. Chem. Eng. Res. Des 2015, 93, 675–683. DOI:10.1016/j.cherd.2014.06.002.
  • Black, B. D.; Harrington, G. W.; Singer, P. C. Reducing Cancer Risks by Improving Organic Carbon Removal. J. Am. Water Works Assoc 1996, 88, 40–52. DOI:10.1002/j.1551-8833.1996.tb06570.x.
  • Yang, S. T.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.; Wang, H. Removal of Methylene Blue from Aqueous Solution by Graphene Oxide. J Colloid Interface Sci 2011, 359, 24–29. DOI:10.1016/j.jcis.2011.02.064.
  • Aiken, G. R.; Hsu-Kim, H.; Ryan, J. N. Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids. Environ. Sci. Technol. 2011, 45, 3196–3201. DOI:10.1021/es103992s.
  • Gao, Y.; Jing, H.; Du, M.; Chen, W. Dispersion of Multi-Walled Carbon Nanotubes Stabilized by Humic Acid in Sustainable Cement Composites. Nanomaterials 2018, 8, 858. DOI:10.3390/nano8100858.
  • Khan, A. A.; Singh, R. P. Adsorption Thermodynamics of Carbofuran on Sn(IV) Arsenosilicate in H+, Na+, and Ca2+ Forms. Colloids Surf. A 1987, 24, 33–42. DOI:10.1016/0166-6622(87)80259-7.
  • Anastopoulos, I.; Hosseini-Bandegharaei, A.; Fu, J.; Mitropoulos, A. C.; Kyzas, G. Z. Use of Nanoparticles for Dye Adsorption. J. Dispers. Sci. Technol 2018, 39, 836–847. DOI:10.1080/01932691.2017.1398661.
  • Derakhshani, E.; Naghizadeh, A. Optimization of Humic Acid Removal by Adsorption onto Bentonite and Montmorillonite Nanoparticles. J. Mol. Liq 2018, 259, 76–81. DOI:10.1016/j.molliq.2018.03.014.
  • Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. DOI:10.1016/j.biortech.2009.12.042.
  • Wu, L. M.; Forsling, W.; Schindler, P. W. Surface Complexation of Calcium Mineralsin Aqueous Solutions. 1. Surface Protonation of Fluoroapatite Water Interfaces. J. Colloid Interface Sci 1991, 147, 178–185. DOI:10.1016/0021-9797(91)90145-X.
  • Osman, M. B.; Garcia, S. D.; Krafft, J. M.; Methivier, C.; Blanchard, J.; Yoshioka, T.; Kubo, J.; Costentin, G. Control of Calcium Accessibility over Hydroxyapatite by Post Precipitation Steps: influence on the Catalytic Reactivity toward Alcohols. Phys. Chem. Chem. Phys. 2016, 18, 27837–27847. DOI:10.1039/C6CP05294K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.