291
Views
5
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of surfactant-stabilized foam stability in the presence of light oil

, , , , , & show all
Pages 1596-1606 | Received 18 Mar 2019, Accepted 09 Jun 2019, Published online: 08 Jul 2019

References

  • Farajzadeh, R. ; Andrianov, A. ; Bruining, H. ; Zitha, P.-L.-J . Comparative Study of CO2 and N2 Foams in Porous Media at Low and High Pressure-Temperatures. Ind. Eng. Chem. Res. 2009, 48 , 4542–4552. DOI: 10.1021/ie801760u.
  • Liu, R. ; Du, D.-J. ; Pu, W.-F. ; Peng, Q. ; Tao, Z.-W. ; Pang, Y . Viscoelastic Displacement and Anomalously Enhanced Oil Recovery of a Novel Star-Like Amphiphilic Polyacrylamide. Chem. Eng. Res. Des. 2019, 142 , 369–385. DOI: 10.1016/j.cherd.2018.12.021.
  • Talebian, S.-H. ; Sagir, M. ; Mumtaz, M . An Integrated Property-Performance Analysis for CO2-Philic Foam-Assisted CO2-Enhanced Oil Recovery. Energy Fuels 2018, 32 , 7773–7785. DOI: 10.1021/acs.energyfuels.8b01131.
  • Simjoo, M. ; Rezaei, T. ; Andrianov, A. ; Zitha, P. L. J . Foam Stability in the Presence of Oil: Effect of Surfactant Concentration and Oil Type. Colloids Surf. A 2013, 438 , 148–158. DOI: 10.1016/j.colsurfa.2013.05.062.
  • Talebian, S.-H. ; Tan, I.-M. ; Sagir, M. ; Muhammad, M . Static and Dynamic Foam/Oil Interactions: Potential of CO2-Philic Surfactants as Mobility Control Agents. J. Pet. Sci. Eng. 2015, 135 , 118–126. DOI: 10.1016/j.petrol.2015.08.011.
  • Sagir, M. ; Tan, I.-M. ; Mushtaq, M. ; Pervaiz, M. ; Tahir, M.-S. ; Shahzad, K . CO2 Mobility Control Using CO2 Philic Surfactant for Enhanced Oil Recovery. J. Petrol. Explor. Prod. Technol. 2016, 6 , 401–407. DOI: 10.1007/s13202-015-0192-8.
  • Liu, R. ; Du, D.-J. ; Pu, W.-F. ; Zhang, J. ; Fan, X.-B . Enhanced Oil Recovery Potential of Alkyl Alcohol Polyoxyethylene Ether Sulfonate Surfactants in High-Temperature and High-Salinity Reservoirs. Energy Fuels 2018, 32 , 12128–12140. DOI: 10.1021/acs.energyfuels.8b02653.
  • Sagir, M. ; Tan, I.-M. ; Mushtaq, M. ; Nadeem, M . CO2 Mobility and CO2/Brine Interfacial Tension Reduction by Using a New Surfactant for EOR Applications. J. Dispersion Sci. Technol. 2014, 35 , 1512–1519. DOI: 10.1080/01932691.2013.859087.
  • Schramm, L.-L. ; Novosad, J.-J . The Destabilization of Foams for Improved Oil Recovery by Crude Oils: Effect of the Nature of the Oil. J. Pet. Sci. Eng. 1992, 7 , 77–90. DOI: 10.1016/0920-4105(92)90010-X.
  • Pu, W. ; Wei, P. ; Sun, L. ; Pu, Y. ; Chen, Y . Investigation on Stabilization of Foam in the Presence of Crude Oil for Improved Oil Recovery. J. Dispersion Sci. Technol. 2019, 40 , 646–656. DOI: 10.1080/01932691.2018.1476153.
  • Harkins, W.-D . A General Thermodynamic Theory of the Spreading of Liquids to Form Duplex Films and of Liquids or Solids to Form Monolayers. J. Chem. Phys. 1941, 9 , 552–568. DOI: 10.1063/1.1750953.
  • Robinson, J.-V. ; Woods, W.-W . A Method of Selecting Foam Inhibitors. J. Chem. Technol. Biotechnol. 1948, 67 , 361–365. DOI: 10.1002/jctb.5000670908.
  • Dippenaar, A . The Destabilization of Froth by Solids. I. The Mechanism of Film Rupture. Int. J. Miner. Process 1982, 9 , 1–14. DOI: 10.1016/0301-7516(82)90002-3.
  • Denkov, N.-D . Mechanisms of Foam Destruction by Oil-Based Antifoams. Langmuir 2004, 20 , 9463–9505. DOI: 10.1021/la049676o.
  • Jia, X.-G. ; Yan, Y.-L. ; Qu, C.-T. ; Zhang, N.-S . Progress in Study of Effect of Crude Oil on Stability of Aqueous Foam. Riyong Huaxue Gongye 2010, 40 , 54–59. DOI: 10.1360/972010-874.
  • Tahir, M.-B. ; Sagir, M. ; Shahzad, K . Removal of Acetylsalicylate and Methyl-Theobromine from Aqueous Environment Using Nano-Photocatalyst WO3-TiO2@g-C3N4 Composite. J. Hazard. Mater. 2019, 363 , 205–213. DOI: 10.1016/j.jhazmat.2018.09.055.
  • Lobo, L. A. ; Nikolov, A. ; Dimitrov, A. ; Kralchevski, P. ; Wasan, D. T . Contact Angle of Air Bubbles Attached to an Air-Water Surface in Foam Applications. Langmuir 1990, 6 , 995–1001. DOI: 10.1021/la00095a019.
  • Duan, X.-G. ; Hou, J.-R. ; Li, S. ; Cheng, T.-T. ; H.-W. Progresses and, Y . Future Trends in Research of Oil Resistant Foaming Agent. Petrochem. Technol. 2013, 42 , 935–940. DOI: 10.3969/j.issn.1000-8144.2013.08.020.
  • Pang, S.-S. ; Pu, W.-F. ; Wang, C.-Y . A Comprehensive Comparison on Foam Behavior in the Presence of Light Oil and Heavy Oil. J. Surfactants Deterg. 2018, 21 , 657–665. DOI: 10.1002/jsde.12161.
  • Rafati, R. ; Oludara, O.-K. ; Haddad, A.-S. ; Hamidi, H . Experimental Investigation of Emulsified Oil Dispersion on Bulk Foam Stability. Colloids Surf. A 2018, 554 , 110–121. DOI: 10.1016/j.colsurfa.2018.06.043.
  • Liu, H.-L. ; Zhang, X.-D. ; Dai, H. ; An, P. ; Bai, Y. ; Zhang, J. ; Chen, G . Branched Modification of Cationic Surfactant and Its Foaming Activity. Oilfield Chem. 2018, 35 , 467–473. DOI: 10.19346/j.cnki.1000-4092.2018.03.017.
  • Ji, X.-J . Effect of Molecular Structure on Foam Stability of Gemini Surfactants by Molecular Dynamics Simulation. UPC: QingDao 2016, DOI: CNKI: CDMD:2.1018.814706
  • Clark, P. E. ; Pilehvari, A . Characterization of Crude Oil-in-Water Emulsions. J. Pet. Sci. Eng. 1993, 9 , 165–181. DOI: 10.1016/0920-4105(93)90013-5.
  • Zhao, T. ; Xu, G. ; Yuan, S. ; Chen, Y. ; Yan, H . Molecular Dynamics Study of Alkyl Benzene Sulfonate at Air/Water Interface: Effect of Inorganic Salts. J. Phys. Chem. B 2010, 114 , 5025–5033. DOI: 10.1021/jp907438x.
  • Pang, S.-S. ; Pu, W.-F. ; Li, Y.-Y. ; Liu, Z.-Z. ; Wang, C.-Y. ; Liu, Y.-F . Influence Factors on the Stability of Foam-Oil Interaction. Oilfield Chem. 2015, 355–359. DOI: 10.19346/j.cnki.1000-4092.2015.03.009.
  • Sun, L. ; Pu, W. ; Xin, J. ; Wei, P. ; Wang, B. ; Li, Y.-B. ; Yuan, C.-D . High Temperature and Oil Tolerance of Surfactant Foam/Polymer–Surfactant Foam. RSC Adv. 2015, 5 , 23410–23418. DOI: 10.1039/C4RA17216G.
  • Sun, L. ; Wei, P. ; Pu, W.-F. ; Wang, B. ; Wu, Y.-J. ; Tan, T . The Oil Recovery Enhancement by Nitrogen Foam in High-Temperature and High-Salinity Environments. J. Pet. Sci. Eng. 2016, 147 , 485–494. DOI: 10.1016/j.petrol.2016.09.023.
  • Wu, Y.-J. ; Sun, L. ; Pu, W.-F. ; Wei, P. ; Liu, m . Effect of Crude Oil and Kerosene on Air Foam Properties under High Temperature. Spec. Petrochem. 2014, 31 , 32–36. DOI: 10.3969/j.issn.1003-9384.2014.06.008.
  • Farajzadeh, R. ; Andrianov, A. ; Krastev, R. ; Hirasaki, G. J. ; Rossen, W.-R . Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery. Adv. Colloid Interface Sci. 2012, 183 , 1–13. DOI: 10.1016/j.cis.2012.07.002.
  • Li, Y. ; Guo, F. ; He, X.-J. ; Zhao, G.-Q. ; Wu, J.-J . Using Aqueous Foam Films as Template for the Synthesis of Zinc Sulfide Nanoparticles. Mater. Chem. Phys. 2007, 106 , 120–125. DOI: 10.1016/j.matchemphys.2007.05.044.
  • Jin, F.-Y. ; Wang, S. ; Pu, W.-F. ; Yuan, C.-D. ; Wang, L. ; Li, K.-X. ; Gong, C . Emulsified Oil Foam for Improving the Flowability of Heavy Oil in Wellbore under High Salinity Environments. J. Ind. Eng. Chem. 2016, 39 , 153–161. DOI: 10.1016/j.jiec.2016.05.018.
  • Remy, M. ; Elise, L . Stable Oil-Laden Foams: Formation and Evolution. Adv. Colloid Interface Sci. 2017, 247 , 465–476. DOI: 10.1016/j.cis.2017.07.027.
  • Wang, C. ; Fang, H. ; Gong, Q. ; Xu, Z. ; Liu, Z. ; Zhang, L. ; Zhang, L. ; Zhao, S . Roles of Catanionic Surfactant Mixtures on the Stability of Foams in the Presence of Oil. Energy Fuels 2016, 30 , 6355–6364. DOI: 10.1021/acs.energyfuels.6b01112.
  • Micheau, C. ; Bauduin, P. ; Diat, O. ; Faure, S . Specific Salt and pH Effects on Foam Film of a pH Sensitive Surfactant. Langmuir 2013, 29 , 8472–8481. DOI: 10.1021/la400879t.
  • Lobo, L. ; Wasan, D.-T . Mechanisms of Aqueous Foam Stability in the Presence of Emulsified Non-Aqueous-Phase Liquids: Structure and Stability of the Pseudoemulsion Film. Langmuir 1993, 9 , 1668–1677. DOI: 10.1021/la00031a012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.