390
Views
5
CrossRef citations to date
0
Altmetric
Articles

Separation performance of new type of multi-stage axial cyclone used as demister in power plant emission system

, , &
Pages 1643-1656 | Received 27 Feb 2019, Accepted 15 Jun 2019, Published online: 28 Jun 2019

References

  • Bao, J.-J. ; Liu, H. ; Pan, J. ; Ma, M.-X. ; Wang, J.-H. ; Yang, H.-M. ; Yang, L.-J . Emission Characteristics of PM2.5 from Flue Gas Desulfurated by Limestone-Gypsum Method. Therm. Pow. Gener. 2014, 43 , 1–7. DOI: 10.3969/j.issn.1002-3364.2014.10.001.
  • Duan, L. ; Wu, X.-L. ; Ji, Z.-L. ; Xiong, Z.-Y. ; Zhuang, J.-X . The Flow Pattern and Entropy Generation in an Axial Inlet Cyclone with Reflux Cone and Gaps in the Vortex Finder. Powd. Technol. 2016, 303 , 192–202. DOI: 10.1016/j.powtec.2016.09.019.
  • Wang, M.-Q. ; Wang, C.-H . Practice of Demister Upgrade and Reconstruction in Wet Flue Gas Desulphurization System. Zhejiang. Elec. Power. 2014, 11 , 23–26. DOI: 10.3969/j.issn.1007-1881.2014.11.006.
  • Xiong, Z.-Y. ; Ji, Z.-L. ; Wu, X.-L . Development of a Cyclone Separator with High Efficiency and Low Pressure Drop in Axial Inlet Cyclones. Powd. Technol. 2014, 253 , 644–649. DOI: 10.1016/j.powtec.2013.12.016.
  • Hsiao, T.-C. ; Chen, D. ; Greenberg, P.-S. ; Street, K.-W . Effect of Geometric Configuration on the Collection Efficiency of Axial Flow Cyclones. J. Aeros. Sci. 2011, 42 , 78–86. DOI: 10.1016/j.jaerosci.2010.11.004.
  • Cui, B.-Y. ; Zhang, C.-E. ; Wei, D.-Z. ; Lu, S.-S. ; Feng, Y.-Q . Effects of Feed Size Distribution on Separation Performance of Hydrocyclones with Different Vortex Finder Diameters. Powd. Technol. 2017, 322 , 114–123. DOI: 10.1016/j.powtec.2017.09.010.
  • Gao, X. ; Chen, J.-F. ; Feng, J.-M. ; Peng, X.-Y . Numerical Investigation of the Effects of the Central Channel on the Flow Field in an Oil–Gas Cyclone Separator. Comp. Fluids. 2014, 92 , 45–55. DOI: 10.1016/j.compfluid.2013.11.001.
  • Yohana, E. ; Tauviqirrahman, M. ; Putra, A.-R. ; Diana, A.-E. ; Choi, K.-H . Numerical Analysis on the Effect of the Vortex Finder Diameter and the Length of Vortex Limiter on the Flow Field and Particle Collection in a New Cyclone Separator. Cog. Eng. 2018, 5 , 1–15. DOI: 10.1080/23311916.2018.1562319.
  • Li, Y. ; Liu, C.-J. ; Zhang, T. ; Li, D. ; Zheng, L.-Y . Experimental and Numerical Study of a Hydrocyclone with the Modification of Geometrical Structure. Can. J. Chem. Eng. 2018, 96 , 2638–2649. DOI: 10.1002/cjce.23206.
  • Zhang, T. ; Liu, C.-J. ; Guo, K. ; Liu, H. ; Wang, Z . C. Analysis of Flow Field in Optimal Cyclone Separators with Hexagonal Structure Using Mathematical Models and Computational Fluid Dynamics Simulation. Ind. Eng. Chem. Res. 2016, 55 , 351–365. DOI: 10.1021/acs.iecr.5b02813.
  • Jin, Y.-H. ; Fan, C. ; Mao, Y. ; Shi, M.-X . Research on Parameter Design Method of Vane-Type Cyclone Blade. Chem. Machi. 1999, 26 , 21–24. (in Chinese) DOI: 10.1109/ISIC.1999.796628.
  • Jin, X.-H. ; Jin, Y.-H. ; Wang, Z.-B. ; Wang, J.-J . Effect of Guide Vane Angle on Separation Performance of Axial Flow Gas-Liquid Cyclone. Petrol. Machi. 2008, 36 , 1–5. (in Chinese) DOI: 10.16082/j.cnki.issn.1001-4578.2008.02.001.
  • Wang, Z.-B. ; Ma, Y. ; Jin, Y.-H . Simulation and Experiment of Flow Field in Axial-Flow Hydrocyclone. Chem. Eng. Res. Des. 2011, 89 , 603–610. DOI: 10.1016/j.cherd.2010.09.004.
  • Cuypers, C.-T. ; Stanbridge, D.-I . Device for Treating a Gas/Liquid Mixture. U.S. Patent 7,163,626 B1, 2007.
  • Koene, F.-P.-J. ; Bos, A . Cyclone Separator, Liquid Collecting Box and Pressure Vessel. U.S. Patent 7,381,235. 2008.
  • Ng, S.-Y. ; Priestman, G.-H. ; Allen, R.-W.-K . Investigation of Flooding, Re-Entrainment and Grade Efficiency in Axial Flow Cyclones. Chem. Eng. Res. Des. 2006, 84 , 884–894. DOI: 10.1205/cherd05063.
  • Man, X.-W . Experimental Research on the New Type Axial Flow Cyclone. Master Dissertation, China University of Petroleum, Qingdao, China, 2011.
  • Gong, G.-C. ; Yang, Z.-Z. ; Zhu, S.-L . Numerical Investigation of the Effect of Helix Angle and Leaf Margin on the Flow Pattern and the Performance of the Axial Flow Cyclone Separator. Appl. Math. Mod. 2012, 36 , 3916–3930. DOI: 10.1016/j.apm.2011.11.034.
  • Baltrenas, P. ; Chlebnikovas, A . Investigation into the Aerodynamic Parameters of the Recently Designed Two-Level Cylindrical Multi-Channel Cyclone-Separator. Sep. Sci. Technol. 2015, 50 , 1257–1269. DOI: 10.1080/01496395.2014.967774.
  • Zhang, T. ; Guo, K. ; Liu, C.-J. ; Li, Y. ; Tao, M. ; Shen, C . Experimental and Numerical Investigations of a Dual-Stage Cyclone Separator. Chem. Eng. Technol. 2018, 41 , 606–617. DOI: 10.1002/ceat.201700052.
  • Gao, Z.-W. ; Wang, J. ; Wang, J.-Y. ; Mao, Y. ; Wei, Y.-D . Analysis of the Effect of Vortex on the Flow Field of a Cylindrical Cyclone Separator. Sep. Purific. Technol. 2019, 211 , 438–447. DOI: 10.1016/j.seppur.2018.08.024.
  • Xu, M.-H. ; Yang, L.-S. ; Sun, X.-H. ; Wang, J.-X. ; Gong, L . Numerical Analysis of Flow Resistance Reduction Methods in Cyclone Separator. J. Taiwan Ins. Chem. Eng. 2019, 96 , 419–430. DOI: 10.1016/j.jtice.2018.12.011.
  • Oh, J. ; Choi, S. ; Kim, J . Numerical Simulation of an Internal Flow Field in a Uniflow Cyclone Separator. Powd. Technol. 2015, 274 , 135–145. DOI: 10.1016/j.powtec.2015.01.015.
  • Zhou, F.-Q. ; Sun, G.-G. ; Han, X.-P. ; Zhang, Y. ; Bi, W.-Q . Experimental and CFD Study on Effects of Spiral Guide Vanes on Cyclone Performance. Ad. Powd. Technol. 2018, 29 , 3394–3403. DOI: 10.1016/j.apt.2018.09.022.
  • Gao, X. ; Chen, J.-F. ; Feng, J.-M. ; Peng, X.-Y . Numerical and Experimental Investigations of the Effects of the Breakup of Oil Droplets on the Performance of Oil–Gas Cyclone Separators in Oil-Injected Compressor Systems. Inter. J. Refri. 2013, 36 , 1894–1904. DOI: 10.1016/j.ijrefrig.2013.06.004.
  • Wang, L.-Z. ; Feng, J.-M. ; Gao, X. ; Peng, X.-Y . Investigation on the Oil–Gas Separation Efficiency considering Oil Droplets Breakup and Collision in a Swirling Flow. Chem. Eng. Res. Des. 2017, 117 , 394–400. DOI: 10.1016/j.cherd.2016.10.033.
  • Misiulia, D. ; Elsayed, K. ; Andersson, A.-G . Geometry Optimization of a Deswirler for Cyclone Separator in Terms of Pressure Drop Using CFD and Artificial Neural Network. Separ. Purif. Technol. 2017, 185 , 10–23. DOI: 10.1016/j.seppur.2017.05.025.
  • Hoffmann, A. C. ; Stein, L. E. ; Bradshaw, P . Gas Cyclones and Swirl Tubes: Principles, Design and Operation. Appl. Mech. Rev. 2003, 56 , B28. DOI: 10.1115/1.1553446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.