379
Views
16
CrossRef citations to date
0
Altmetric
Articles

Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin

, &
Pages 1777-1788 | Received 13 Mar 2019, Accepted 19 Jun 2019, Published online: 01 Jul 2019

References

  • Feng, Z.-Z.; Li, M.-Y.; Wang, Y.-T.; Zhu, M.-J. Astaxanthin from Phaffia Rhodozyma: Microencapsulation with Carboxymethyl Cellulose Sodium and Microcrystalline Cellulose and Effects of Microencapsulated Astaxanthin on Yogurt Properties. LWT Food Sci. Technol. 2018, 96, 152–160. DOI:10.1016/j.lwt.2018.04.084.
  • Britton, G.; Khachik, F. Carotenoids in food. In Carotenoids, Pfander H., Liaaen-Jensen S. Eds.; Springer: Birkhäuser Verlag, 2009.
  • El-Agamey, A.; Lowe, G. M.; McGarvey, D. J.; Mortensen, A.; Phillip, D. M.; Truscott, T. G.; Young, A. J. Carotenoid Radical Chemistry and Antioxidant/Pro-Oxidant Properties. Arch. Biochem. Biophys. 2004, 430, 37–48. DOI:10.1016/j.abb.2004.03.007.
  • Yuan, J.-P.; Peng, J.; Yin, K.; Wang, J.-H. Potential Health-Promoting Effects of Astaxanthin: A High-Value Carotenoid Mostly from Microalgae. Mol. Nutr. Food Res. 2011, 55, 150–165. DOI:10.1002/mnfr.201000414.
  • Guerin, M.; Huntley, M. E.; Olaizola, M. Haematococcus Astaxanthin: Applications for Human Health and Nutrition. Trends Biotechnol. 2003, 21, 210–216. DOI:10.1016/S0167-7799(03)00078-7.
  • Lorenz, R. T.; Cysewski, G. R. Commercial Potential for Haematococcus Microalgae as a Natural Source of Astaxanthin. Trends Biotechnol. 2000, 18, 160–167. DOI:10.1016/S0167-7799(00)01433-5.
  • Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F. M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. DOI:10.1080/10408690590957188.
  • Naguib, Y. M. A. Antioxidant Activities of Astaxanthin and Related Carotenoids. J. Agric. Food Chem. 2000, 48, 1150–1154. DOI:10.1021/jf991106k.
  • Rao, A. R.; Sindhuja, H. N.; Dharmesh, S. M.; Sankar, K. U.; Sarada, R.; Ravishankar, G. A. Effective Inhibition of Skin Cancer, Tyrosinase, and Antioxidative Properties by Astaxanthin and Astaxanthin Esters from the Green Alga Haematococcus Pluvialis. J. Agric. Food Chem. 2013, 61, 3842–3851. DOI:10.1021/jf304609j.
  • Tominaga, K.; Hongo, N.; Karato, M.; Yamashita, E. Cosmetic Benefits of Astaxanthin on Humans Subjects. Acta Biochim. Pol. 2012, 59, 43–47.
  • Anarjan, N.; Tan, C. P.; Ling, T. C.; Lye, K. L.; Malmiri, H. J.; Nehdi, I. A.; Cheah, Y. K.; Mirhosseini, H.; Baharin, B. S. Effect of Organic-Phase Solvents on Physicochemical Properties and Cellular Uptake of Astaxanthin Nanodispersions. J. Agric. Food Chem. 2011, 59, 8733–8741. DOI:10.1021/jf201314u.
  • Pu, J.; Bankston, J. D.; Sathivel, S. Developing Microencapsulated Flaxseed Oil Containing Shrimp (Litopenaeus Setiferus) Astaxanthin Using a Pilot Scale Spray Dryer. Biosyst. Eng. 2011, 108, 121–132. DOI:10.1016/j.biosystemseng.2010.11.005.
  • Al Abood, R. M.; Talegaonkar, S.; Tariq, M.; Ahmad, F. J. Microemulsion as a Tool for the Transdermal Delivery of Ondansetron for the Treatment of Chemotherapy Induced Nausea and Vomiting. Colloids Surf. B Biointerfaces 2013, 101, 143–151. DOI:10.1016/j.colsurfb.2012.06.015.
  • Azeem, A.; Ahmad, F. J.; Khar, R. K.; Talegaonkar, S. Nanocarrier for the Transdermal Delivery of an Antiparkinsonian Drug. AAPS Pharmscitech. 2009, 10, 1093–1103. DOI:10.1208/s12249-009-9306-2.
  • Hama, S.; Takahashi, K.; Inai, Y.; Shiota, K.; Sakamoto, R.; Yamada, A.; Tsuchiya, H.; Kanamura, K.; Yamashita, E.; Kogure, K. Protective Effects of Topical Application of a Poorly Soluble Antioxidant Astaxanthin Liposomal Formulation on Ultraviolet-Induced Skin Damage. J. Pharma. Sci. 2012, 101, 2909–2916. DOI:10.1002/jps.23216.
  • Khalid, N.; Shu, G.; Holland, B. J.; Kobayashi, I.; Nakajima, M.; Barrow, C. J. Formulation and Characterization of O/W Nanoemulsions Encapsulating High Concentration of Astaxanthin. Food Res. Int. 2017, 102, 364–371. DOI:10.1016/j.foodres.2017.06.019.
  • Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Design and Characterization of Astaxanthin-Loaded Nanostructured Lipid Carriers. Innov. Food Sci. Emerg. Technol. 2014, 26, 366–374. DOI:10.1016/j.ifset.2014.06.012.
  • Ribeiro, H. S.; Rico, L. G.; Badolato, G. G.; Schubert, H. Production of O/W Emulsions Containing Astaxanthin by Repeated Premix Membrane Emulsification. J. Food Sci. 2005, 70, E117–E123. DOI:10.1111/j.1365-2621.2005.tb07083.x.
  • Li, M.; Zahi, M. R.; Yuan, Q.; Tian, F.; Liang, H. Preparation and Stability of Astaxanthin Solid Lipid Nanoparticles Based on Stearic Acid. Eur. J. Lipid Sci. Technol. 2016, 118, 592–602. DOI:10.1002/ejlt.201400650.
  • Suitthimeathegorn, O.; Jaitely, V.; Florence, A. T. Novel Anhydrous Emulsions: Formulation as Controlled Release Vehicles. Int. J. Pharma. 2005, 298, 367–371. DOI:10.1016/j.ijpharm.2005.03.028.
  • Atanase, L. I.; Riess, G. Water-Dispersible Non-Aqueous Emulsions Stabilized by a Poly(Butadiene)-b-Poly(2-Vinylpyridine) Block Copolymer. CR Chim. 2014, 17, 310–315. DOI:10.1016/j.crci.2013.09.007.
  • Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. DOI:10.1016/j.cocis.2005.06.004.
  • Fornaguera, C.; Grijalvo, S.; Galan, M.; Fuentes-Paniagua, E.; Javier de la Mata, F.; Gomez, R.; Eritja, R.; Caldero, G.; Solans, C. Novel Non-Viral Gene Delivery Systems Composed of Carbosilane Dendron Functionalized Nanoparticles Prepared from Nano-Emulsions as Non-Viral Carriers for Antisense Oligonucleotides. Int. J. Pharm. 2015, 478, 113–123. DOI:10.1016/j.ijpharm.2014.11.031.
  • Solans, C.; Sole, I. Nano-Emulsions: Formation by Low-Energy Methods. Curr Opin Colloid Interface Sci. 2012, 17, 246–254. DOI:10.1016/j.cocis.2012.07.003.
  • Fornaguera, C.; Llinas, M.; Solans, C.; Caldero, G. Design and in Vitro Evaluation of Biocompatible Dexamethasone-Loaded Nanoparticle Dispersions, Obtained from Nano-Emulsions, for Inhalatory Therapy. Colloids Surf. B Biointerfaces 2015, 125, 58–64. DOI:10.1016/j.colsurfb.2014.11.006.
  • Rottke, M.; Lunter, D. J.; Daniels, R. In Vitro Studies on Release and Skin Permeation of Nonivamide from Novel Oil-in-Oil-Emulsions. Eur. J. Pharm. Biopharm. 2014, 86, 260–266. DOI:10.1016/j.ejpb.2013.09.018.
  • Okonogi, S.; Riangjanapatee, P. Physicochemical Characterization of Lycopene-Loaded Nanostructured Lipid Carrier Formulations for Topical Administration. Int. J. Pharm. 2015, 478, 726–735. DOI:10.1016/j.ijpharm.2014.12.002.
  • Ding, B.; Chen, P.; Kong, Y.; Zhai, Y.; Pang, X.; Dou, J.; Zhai, G. Preparation and Evaluation of Folate-Modified Lipid Nanocapsules for Quercetin Delivery. J. Drug Target. 2014, 22, 67–75. DOI:10.3109/1061186X.2013.839685.
  • Turabee, M. H.; Thambi, T.; Lym, J. S.; Lee, D. S. Bioresorbable Polypeptide-Based Comb-Polymers Efficiently Improves the Stability and Pharmacokinetics of Proteins in Vivo. Biomater. Sci. 2017, 5, 837–848. DOI:10.1039/C7BM00128B.
  • Li, H.; Deng, Z.; Liu, R.; Loewen, S.; Tsao, R. Carotenoid Compositions of Coloured Tomato Cultivars and Contribution to Antioxidant Activities and Protection against H2O2-Induced Cell Death in H9c2. Food Chem. 2013, 136, 878–888. DOI:10.1016/j.foodchem.2012.08.020.
  • Vicentini, F. T. M. C.; Simi, T. R. M.; Del Ciampo, J. O.; Wolga, N. O.; Pitol, D. L.; Iyomasa, M. M.; Bentley, M. V. L. B.; Fonseca, M. J. V., Quercetin in w/o Microemulsion: In Vitro and in Vivo Skin Penetration and Efficacy against UVB-Induced Skin Damages Evaluated in Vivo. Eur. J. Pharma. Biopharm. 2008, 69, 948–957. DOI:10.1016/j.ejpb.2008.01.012.
  • Fang, J.-Y.; Fang, C.-L.; Liu, C.-H.; Su, Y.-H. Lipid Nanoparticles as Vehicles for Topical Psoralen Delivery: Solid Lipid Nanoparticles (SLN) versus Nanostructured Lipid Carriers (NLC). Eur. J. Pharm. Biopharm. 2008, 70, 633–640. DOI:10.1016/j.ejpb.2008.05.008.
  • Galindo-Rodriguez, S. A.; Puel, F.; Briancon, S.; Allemann, E.; Doelker, E.; Fessi, H. Comparative Scale-up of Three Methods for Producing Ibuprofen-Loaded Nanoparticles. Eur. J. Pharm. Sci. 2005, 25, 357–367. DOI:10.1016/j.ejps.2005.03.013.
  • Das, S.; Ng, W. K.; Tan, R. B. H. Are Nanostructured Lipid Carriers (NLCs) Better than Solid Lipid Nanoparticles (SLNs): Development, Characterizations and Comparative Evaluations of Clotrimazole-Loaded SLNs and NLCs? Eur. J. Pharm. Sci. 2012, 47, 139–151. DOI:10.1016/j.ejps.2012.05.010.
  • Mueller, R. H.; Petersen, R. D.; Hornmoss, A.; Pardeike, J. Nanostructured Lipid Carriers (NLC) in Cosmetic Dermal Products. Adv. Drug Deliv. Rev. 2007, 59, 522–530. DOI:10.1016/j.addr.2007.04.012.
  • Wissing, S. A.; Muller, R. H. Solid Lipid Nanoparticles as Carrier for Sunscreens: In Vitro Release and in Vivo Skin Penetration. J. Control. Release 2002, 81, 225–233. DOI:10.1016/S0168-3659(02)00056-1.
  • Zhai, Y.; Yang, X.; Zhao, L.; Wang, Z.; Zhai, G. Lipid Nanocapsules for Transdermal Delivery of Ropivacaine: In Vitro and in Vivo Evaluation. Int. J. Pharm. 2014, 471, 103–111. DOI:10.1016/j.ijpharm.2014.05.035.
  • Muller, R. H.; Jacobs, C.; Kayser, O. Nanosuspensions as Particulate Drug Formulations in Therapy Rationale for Development and What we Can Expect for the Future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. DOI:10.1016/S0169-409X(00)00118-6.
  • Araujo, J.; Gonzalez-Mira, E.; Egea, M. A.; Garcia, M. L.; Souto, E. B. Optimization and Physicochemical Characterization of a Triamcinolone Acetonide-Loaded NLC for Ocular Antiangiogenic Applications. Int. J. Pharm. 2010, 393, 167–175. DOI:10.1016/j.ijpharm.2010.03.034.
  • Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; McClements, D. J. Optimization of Cinnamon Oil Nanoemulsions Using Phase Inversion Temperature Method: Impact of Oil Phase Composition and Surfactant Concentration. J. Colloid Interface Sci. 2018, 514, 208–216. DOI:10.1016/j.jcis.2017.11.084.
  • Tsai, M.-J.; Wu, P.-C.; Huang, Y.-B.; Chang, J.-S.; Lin, C.-L.; Tsai, Y.-H.; Fang, J.-Y. Baicalein Loaded in Tocol Nanostructured Lipid Carriers (Tocol NLCs) for Enhanced Stability and Brain Targeting. Int. J. Pharm. 2012, 423, 461–470. DOI:10.1016/j.ijpharm.2011.12.009.
  • Chen, X.; Chen, R.; Guo, Z.; Li, C.; Li, P. The Preparation and Stability of the Inclusion Complex of Astaxanthin with Beta-Cyclodextrin. Food Chem. 2007, 101, 1580–1584. DOI:10.1016/j.foodchem.2006.04.020.
  • Yuan, C.; Jin, Z.; Xu, X. Inclusion Complex of Astaxanthin with Hydroxypropyl-Beta-Cyclodextrin: UV, FTIR, H-1 NMR and Molecular Modeling Studies. Carbohydr. Polym. 2012, 89, 492–496. DOI:10.1016/j.carbpol.2012.03.033.
  • Ramos Campos, E. V.; de Oliveira, J. L.; Goncalves da Silva, C. M.; Pascoli, M.; Pasquoto, T.; Lima, R.; Abhilash, P. C.; Fraceto, L. F. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications. Sci. Rep. 2015, 5, DOI:10.1038/srep13809.
  • Colin-Chavez, C.; Soto-Valdez, H.; Peralta, E.; Lizardi-Mendoza, J.; Balandran-Quintana, R. Diffusion of Natural Astaxanthin from Polyethylene Active Packaging Films into a Fatty Food Simulant. Food Res. Int. 2013, 54, 873–880. DOI:10.1016/j.foodres.2013.08.021.
  • Zur Muhlen, A.; Schwarz, C.; Mehnert, W. Solid Lipid Nanoparticles (SLN) for Controlled Drug delivery - Drug Release and Release Mechanism. Eur. J. Pharm. Biopharm. 1998, 45, 149–155. DOI:10.1016/S0939-6411(97)00150-1.
  • Xia, N.; Liu, T.; Wang, Q.; Xia, Q.; Bian, X. In Vitro Evaluation of Alpha-Lipoic Acid-Loaded Lipid Nanocapsules for Topical Delivery. J. Microencapsul. 2017, 34, 571–581. DOI:10.1080/02652048.2017.1367852.
  • Singh, N.; Rajini, P. S. Free Radical Scavenging Activity of an Aqueous Extract of Potato Peel. Food Chem. 2004, 85, 611–616. DOI:10.1016/s0308-8146(03)00396-0.
  • Dickson, F. M.; Lawrence, J. N.; Benford, D. J. Surfactant-Induced Cytotoxicity in Cultures of Human Keratinocytes and a Commercially Available Cell Line (3T3). Toxicol. in Vitro 1993, 7, 381–384. DOI:10.1016/0887-2333(93)90031-Y.
  • Welss, T.; Basketter, D. A.; Schroder, K. R. In Vitro Skin Irritation: Facts and Future. State of the Art Review of Mechanisms and Models. Toxicol. in Vitro 2004, 18, 231–243. DOI:10.1016/j.tiv.2003.09.009.
  • Wolfe, K. L.; Liu, R. H. Structure-Activity Relationships of Flavonoids in the Cellular Antioxidant Activity Assay. J. Agric. Food Chem. 2008, 56, 8404–8411. DOI:10.1021/jf8013074.
  • Ak, T.; Gulcin, I. Antioxidant and Radical Scavenging Properties of Curcumin. Chem. Biol. Interact. 2008, 174, 27–37. DOI:10.1016/j.cbi.2008.05.003.
  • Ruktanonchai, U.; Bejrapha, P.; Sakulkhu, U.; Opanasopit, P.; Bunyapraphatsara, N.; Junyaprasert, V.; Puttipipatkhachorn, S. Physicochemical Characteristics, Cytotoxicity, and Antioxidant Activity of Three Lipid Nanoparticulate Formulations of Alpha-Lipoic Acid. AAPS Pharmscitech. 2009, 10, 227–234. DOI:10.1208/s12249-009-9193-6.
  • Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Fabrication of Curcumin-Loaded Bovine Serum Albumin (BSA)-Dextran Nanoparticles and the Cellular Antioxidant Activity. Food Chem. 2018, 239, 1210–1218. DOI:10.1016/j.foodchem.2017.07.075.
  • Sessa, M.; Tsao, R.; Liu, R.; Ferrari, G.; Donsi, F. Evaluation of the Stability and Antioxidant Activity of Nanoencapsulated Resveratrol during in Vitro Digestion. J. Agric. Food Chem. 2011, 59, 12352–12360. DOI:10.1021/jf2031346.
  • Teeranachaideekul, V.; Boonme, P.; Souto, E. B.; Müller, R. H.; Junyaprasert, V. B. Influence of Oil Content on Physicochemical Properties and Skin Distribution of Nile Red-Loaded NLC. J. Control. Release 2008, 128, 134–141. DOI:10.1016/j.jconrel.2008.02.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.