291
Views
8
CrossRef citations to date
0
Altmetric
Articles

Facile synthesis of chrysanthemum-like mesoporous α-FeOOH and its adsorptive behavior of antimony from aqueous solution

, &
Pages 1812-1820 | Received 04 Apr 2019, Accepted 22 Jun 2019, Published online: 15 Jul 2019

References

  • He, M.; Wang, X.; Wu, F.; Fu, Z. Antimony Pollution in China. Sci. Total Environ. 2012, 421−422, 41–52. DOI: 10.1016/j.scitotenv.2011.06.009.
  • Fan, H. T.; Tang, Q.; Sun, Y.; Zhang, Z. G.; Li, W. X. Selective Removal of Antimony(III) from Aqueous Solution Using Antimony(III)-Imprinted Organic–Inorganic Hybrid Sorbents by Combination of Surface Imprinting Technique with Sol–Gel Process. Chem. Eng. J. 2014, 258, 146–156. DOI: 10.1016/j.cej.2014.04.118.
  • Gebel, T. Arsenic and Antimony: Comparative Approach on Mechanistic Toxicology. Chem. Biol. Interact. 1997, 107, 131–144. DOI: 10.1016/S0009-2797(97)00087-2.
  • Fowler, B. A.; Goering, P. L.; Antimony. In Metals and Their Compounds in the Environment; M. E, Ed.; Wiley-VCH: New York, 1991.
  • Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of Antimony onto Iron Oxyhydroxides: Adsorption Behavior and Surface Structure. J. Hazard. Mater. 2014, 276, 339–345. DOI: 10.1016/j.jhazmat.2014.05.025.
  • Multani, R. S.; Feldmann, T.; Demopoulos, G. P. Antimony in the Metallurgical Industry: A Review of Its Chemistry and Environmental Stabilization Options. Hydrometallurgy 2016, 164, 141–153. DOI: 10.1016/j.hydromet.2016.06.014.
  • Wang, N.; Zhang, S.; He, M. Bacterial Community Profile of Contaminated Soils in a Typical Antimony Mining Site. Environ. Sci. Pollut. Res. 2018, 25, 141–152. DOI: 10.1007/s11356-016-8159-y.
  • Miao, Y.; Han, F.; Pan, B.; Niu, Y.; Nie, G.; Lv, L. Antimony(V) Removal from Water by Hydrated Ferric Oxides Supported by Calcite Sand and Polymeric Anion Exchanger. J. Environ. Sci. 2014, 26, 307–314. DOI: 10.1016/S1001-0742(13)60418-0.
  • Dore, E.; Frau, F. Antimonate Uptake by Calcined and Uncalcined Layered Double Hydroxides: Effect of Cationic Composition and M2+/M3+ Molar Ratio. Environ. Sci. Pollut. Res. 2018, 25, 916–929. DOI: 10.1007/s11356-017-0483-3.
  • Fan, H. T.; Sun, Y.; Tang, Q.; Li, W.; Sun, T. Selective Adsorption of Antimony(III) from Aqueous Solution by Ion-Imprinted Organic–Inorganic Hybrid Sorbent: Kinetics, Isotherms and Thermodynamics. J. Taiwan Inst. Chem. Eng. 2014, 45, 2640–2648. DOI: 10.1016/j.jtice.2014.07.008.
  • Fan, H. T.; Sun, W.; Jiang, B.; Wang, Q. J.; Li, D. W.; Huang, C. C.; Wang, K. J.; Zhang, Z. G.; Li, W. X. Adsorption of Antimony(III) from Aqueous Solution by Mercaptofunctionalized Silica-Supported Organic Inorganic Hybrid Sorbent: Mechanism Insights. Chem. Eng. J. 2016, 286, 128–138. DOI: 10.1016/j.cej.2015.10.048.
  • Yang, L.; Zhou, J.; Lv, D.; Sun, Y.; Lou, Z.; Xu, X. Preparation and Application of Iron-Based Composite Materials for the Removal of Antimony from Aqueous Solution. Process Chem. 2017, 29, 1407–1421.
  • Deng, R.-J.; Jin, C.-S.; Ren, B.-Z.; Hou, B.-L.; Hursthouse, A. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents. Water 2017, 9, 794. DOI: 10.3390/w9100794.
  • Wilson, S. C.; Lockwood, P. V.; Ashley, P. M.; Tighe, M. The Chemistry and Behaviour of Antimony in the Soil Environment with Comparisons to Arsenic: A Critical Review. Environ. Pollut. 2010, 158, 1169–1181. DOI: 10.1016/j.envpol.2009.10.045.
  • He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Pervaiz, A.; Shan, J. Antimony Speciation in the Environment Recent Advances in Understanding the Biogeochemical Processes and Ecological Effects. J. Environ. Sci. 2019, 75, 14–39. DOI: 10.1016/j.jes.2018.05.023.
  • Xi, J.; He, M.; Lin, C. Adsorption of Antimony(V) on Kaolinite as a Function of pH, Ionic Strength and Humic Acid. Environ. Earth Sci. 2010, 60, 715–722. DOI: 10.1007/s12665-009-0209-z.
  • Xi, J.; He, M.; Lin, C. Adsorption of Antimony(III) and Antimony(V) on Bentonite Kinetics, Thermodynamics and Anion Competition. Microchem. J. 2011, 97, 85–91. DOI: 10.1016/j.microc.2010.05.017.
  • Mishra, S.; Sankararamakrishnan, N. Characterization, Evaluation, and Mechanistic Insights on the Adsorption of Antimonite Using Functionalized Carbon Nanotubes. Environ. Sci. Pollut. Res. 2018, 25, 12686–12701. DOI: 10.1007/s11356-018-1347-1.
  • Zhang, L.; Lin, Q.; Guo, X.; Verpoort, F. Sorption Behavior of Florisil for the Removal of Antimony Ions from Aqueous Solutions. Water Sci. Technol. 2011, 63, 2114–2111. DOI: 10.2166/wst.2011.497b.
  • Diquattro, S.; Garau, G.; Lauro, G. P.; Silvetti, M.; Deiana, S.; Castaldi, P. Municipal Solid Waste Compost as a Novel Sorbent for Antimony(V) Adsorption and Release Trials at Acidic pH. Environ. Sci. Pollut. Res. 2018, 25, 5603–5615. DOI: 10.1007/s11356-017-0933-y.
  • Xi, J.; He, M.; Zhang, G. Antimony Adsorption on Kaolinite in the Presence of Competitive Anions. Environ. Earth Sci. 2014, 71, 2989–2997. DOI: 10.1007/s12665-013-2673-8.
  • Wang, Y. Y.; Ji, H. Y.; Lu, H. H.; Liu, Y. X.; Yang, R. Q.; He, L. L.; Yang, S. M. Adsorption of Antimony onto Iron Oxyhydroxides: Adsorption Behavior and Surface Structure. RSC Adv. 2018, 8, 3264–3273. DOI: 10.1039/C7RA13151H.
  • Wu, D.; Sun, S. P.; He, M.; Wu, Z.; Xiao, J.; Chen, X. D.; Wu, W. D. As(V) and Sb(V) Co-Adsorption onto Ferrihydrite Synergistic Effect of Sb(V) on as(V) under Competitive Conditions. Environ. Sci. Pollut. Res. 2018, 25, 14585–14594. DOI: 10.1007/s11356-018-1488-2.
  • Wang, H.; Tsang, Y. F.; Wang, Y.; Sun, Y.; Zhang, D.; Pan, X. Adsorption Capacities of Poorly Crystalline Fe Minerals for Antimonate and Arsenate Removal from Water Adsorption Properties and Effects of Environmental and Chemical Conditions. Clean Techn. Environ. Policy 2018, 20, 2169–2179. DOI: 10.1007/s10098-018-1552-0.
  • Yang, K.; Zhou, J.; Lou, Z.; Zhou, X.; Liu, Y.; Li, Y.; Baig, S. A.; Xu, X. Removal of Sb(V) from Aqueous Solutions Using Fe-Mn Binary Oxides: The Influence of Iron Oxides Forms and the Role of Manganese Oxides. Chem. Eng. J. 2018, 354, 577–588. DOI: 10.1016/j.cej.2018.08.069.
  • Biswas, B. K.; Inoue, J.; Kawakita, H.; Ohto, K.; Inoue, K. Effective Removal and Recovery of Antimony Using Metal-Loaded Saponified Orange Waste. J. Hazard. Mater. 2009, 172, 721–728. DOI: 10.1016/j.jhazmat.2009.07.055.
  • Miao, Y.; Han, F.; Pan, B.; Niu, Y.; Nie, G.; Lv, L. Antimony(V) Removal from Water by Hydrated Ferric Oxides Supported by Calcite Sand and Polymeric Anion Exchanger. J Environ Sci. (China) 2014, 26, 307–314. DOI: 10.1016/S1001-0742(13)60418-0.
  • Leuz, A. K.; Mönch, H.; Johnson, C. A. Sorption of Sb(III) and Sb(V) to Goethite: Influence on Sb(III) Oxidation and Mobilization. Environ. Sci. Technol. 2006, 40, 7277–7282. DOI: 10.1021/es061284b.
  • Martínez‐Lladó, X.; de Pablo, J.; Giménez, J.; Ayora, C.; Martí, V.; Rovira, M. Sorption of Antimony(V) onto Synthetic Goethite in Carbonate Medium. Solvent Extr. Ion Exch. 2008, 26, 289–300. DOI: 10.1080/07366290802053637.
  • Li, H.; Li, W.; Zhang, Y.; Wang, T.; Wang, B.; Xu, W.; Jiang, L.; Song, W.; Shu, C.; Wang, C. Chrysanthemum-like α-FeOOH Microspheres Produced by a Simple Method and Their Outstanding Ability in Heavy Metal Ion Removal Green Method and Their Outstanding Ability in Heavy Metal Ion Removal. J. Mater. Chem. 2011, 21, 7878–7881. DOI: 10.1039/c1jm10979k.
  • Xi, J.; He, M. Removal of Sb(III) and Sb(V) from Aqueous Media by Goethite. Water Qual. Res. J. Can. 2013, 48, 223–231. DOI: 10.2166/wqrjc.2013.030.
  • Čanecká, L.; Bujdoš, M.; Gregor, M.; Hudec, P.; Boriová, K.; Dudová, J. Sorption of P(V), as(V) and Sb(V) Oxyanions on Goethite and Hematite during Their Thermal Transformation. Sep. Sci. Technol. 2014, 49, 721–726. DOI: 10.1080/01496395.2013.855786.
  • Essington, M. E.; Stewart, M. A. Influence of Temperature and pH on Antimonate Adsorption by Gibbsite, Goethite, and Kaolinite. Soil Sci. 2015, 180, 54–66. DOI: 10.1097/SS.0000000000000112.
  • Fan, J. X.; Wang, Y. J.; Fan, T. T.; Dang, F.; Zhou, D. M. Effect of Aqueous Fe(II) on Sb(V) Sorption on Soil and Goethite. Chemosphere 2016, 147, 44–51. DOI: 10.1016/j.chemosphere.2015.12.078.
  • Schwertmann, U.; Cornell, R. M. Iron Oxidesin the Laboratory: Preparation and Characterization. VCH: Weinheim and New York, 2000.
  • Hao, Q.; Liu, S.; Yin, X.; Wang, Y.; Li, Q.; Wang, T. Facile Synthesis of 3D Flowerlike α-FeOOH Architectures and Their Conversion into Mesoporous α-Fe2O3 for Gas-Sensing Application. Solid State Sci. 2010, 12, 2125–2129. DOI: 10.1016/j.solidstatesciences.2010.09.010.
  • Li, Z. C.; Guan, M. Y.; Lou, Z. S.; Shang, T. M. Facile Hydrothermal Synthesis and Electrochemical Properties of Flowerlike α-FeOOH. Micro Nano Lett. 2012, 7, 33–36. DOI: 10.1049/mnl.2011.0511.
  • Nauer, G.; Strecha, P.; Brinda-Konopik, N.; Liptay, G. Spectroscopic and Thermoanalytical Characterization of Standard Substances for the Identification of Reaction Products on Iron Electrodes. J. Therm. Anal. 1985, 30, 813–830. DOI: 10.1007/BF01913309.
  • Colomban, P.; Cherifi, S.; Despert, G. Raman Identification of Corrosion Products on Automotive Galvanized Steel Sheets. J. Raman Spectrosc. 2008, 39, 881–886. DOI: 10.1002/jrs.1927.
  • Javadian, H.; Angaji, M. T.; Naushad, M. J. Synthesis and Characterization of Polyaniline/G-Alumina Nanocomposite: A Comparative Study for the Adsorption of Three Different Anionic Dyes. J. Ind. Eng. Chem. 2014, 20, 3890–3900. DOI: 10.1016/j.jiec.2013.12.095.
  • Lagergren, S.; Sven, K. About the Theory of so-Called Adsorption of Soluble Substances. Vetenskapsakad. Handl. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. DOI: 10.1205/095758298529696.
  • Naiya, T. K.; Bhattacharya, A. K.; Das, S. K. Adsorption of Cd(II) and Pb(II) from Aqueous Solutions on Activated Alumina. J. Colloid Interface Sci. 2009, 333, 14–26. DOI: 10.1016/j.jcis.2009.01.003.
  • Singha, B.; Das, S. K. Biosorption of Cr(VI) Ions from Aqueous Solutions: Kinetics, Equilibrium, Thermodynamics and Desorption Studies. Colloids Surf B Biointerfaces 2011, 84, 221–232. DOI: 10.1016/j.colsurfb.2011.01.004.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. M. F. Über Die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385–470.
  • Javadian, H. Application of Kinetic, Isotherm and Thermodynamic Models for the Adsorption of Co(Ii) Ions on Polyaniline/Polypyrrole Copolymer Nanofibers from Aqueous Solution. J. Ind. Eng. Chem. 2014, 20, 4233–4241. DOI: 10.1016/j.jiec.2014.01.026.
  • Li, X.; Dou, X.; Li, J. Antimony(V) Removal from Water by Iron-Zirconium Bimetal Oxide: Performance and Mechanism. J Environ Sci (China) 2012, 24, 1197–1203. DOI: 10.1016/S1001-0742(11)60932-7.
  • Qi, Z.; Lan, H.; Joshi, T. P.; Liu, R.; Liu, H.; Qu, J. Enhanced Oxidative and Adsorptive Capability towards Antimony by Copper-Doping into Magnetite Magnetic Particles. RSC Adv. 2016, 6, 66990–67001. DOI: 10.1039/C6RA13412B.
  • Qi, Z.; Joshi, T. P.; Liu, R.; Liu, H.; Qu, J. Synthesis of Ce(III)-Doped Fe3O4 Magnetic Particles for Efficient Removal of Antimony from Aqueous Solution. J. Hazard. Mater 2017, 329, 193–204. DOI: 10.1016/j.jhazmat.2017.01.007.
  • Fan, H. T.; Fan, X.; Li, J.; Guo, M.; Zhang, D.; Yan, F.; Sun, T. Selective Removal of Arsenic(V) from Aqueous Solution Using a Surface-Ion-Imprinted Amine-Functionalized Silica Gel Sorbent. Ind. Eng. Chem. Res. 2012, 51, 5216–−5223. DOI: 10.1021/ie202655x.
  • Liu, B.; Jian, M.; Wang, H.; Zhang, G.; Liu, R.; Zhang, X.; Qu, J. Comparing Adsorption of Arsenic and Antimony from Single-Solute and Bi-Solute Aqueous Systems onto ZIF-8. Colloids Surf. A 2018, 538, 164–172. DOI: 10.1016/j.colsurfa.2017.10.068.
  • Xu, W.; Wang, H.; Liu, R.; Zhao, X.; Qu, J. The Mechanism of Antimony(III) Removal and Its Reactions on the Surfaces of Fe-Mn binary oxide. J Colloid Interface Sci. 2011, 363, 320–326. DOI: 10.1016/j.jcis.2011.07.026.
  • Li, S.; Guo, Y.; Xiao, M.; Zhang, T.; Yao, S.; Zang, S.; Fan, H.; Shen, Y.; Zhang, Z.; Li, W. Enhanced Arsenate Removal from Aqueous Solution by Mn-Doped MgAl-Layered Double Hydroxides. Environ. Sci. Pollut. Res. 2019, 26, 12014–12024. DOI: 10.1007/s11356-019-04667-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.