216
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synergetic effects of surface free Co3O4 species on catalytic oxidation of NO over cerium-cobalt solid solution

, , , , &
Pages 1976-1983 | Received 28 Mar 2019, Accepted 13 Jul 2019, Published online: 25 Jul 2019

References

  • Klose, W. ; Rincón, S. Adsorption and Reaction of NO on Activated Carbon in the Presence of Oxygen and Water Vapour. Fuel 2007, 86 , 203–209. DOI: 10.1016/j.fuel.2006.06.017.
  • Scholz, C. M. L. ; Gangwal, V. R. ; Croon, M. H. J. M. D. ; Schouten, J. C. Influence of CO2 and H2O on NOx Storage and Reduction on a Pt-Ba/γ-Al2O3 Catalyst. Appl. Catal. B-Environ. 2007, 71 , 143–150. DOI: 10.1016/j.apcatb.2006.08.018.
  • Takahashi, N. ; Yamazaki, K. ; Sobukawa, H. ; Shinjoh, H. The Low-Temperature Performance of NOx Storage and Reduction Catalyst. Appl. Catal. B-Environ. 2007, 70 , 198–204. DOI: 10.1016/j.apcatb.2005.10.029.
  • Liu, Z. ; Epling, W. S. ; Anderson, J. A. Influence of Pt Loading in Aged NOx Storage and Reduction Catalysts. J. Phys. Chem. C 2011, 115 , 952–960. DOI: 10.1021/jp1040037.
  • Shah, A. N. Impacts of Continuously Regenerating Trap and Particle Oxidation Catalyst on the NO2 and Particulate Matter Emissions Emitted from Diesel Engine. J. Environ. Sci. 2012, 24 , 624–631. DOI: 10.1016/S1001-0742(11)60810-3.
  • Zhang, S. ; Li, H. ; Qin, Z. Promotional Effect of F-Doped V2O5–WO3/TiO2 Catalyst for NH3-SCR of NO at Low-Temperature. Appl. Catal. A-Gen. 2012, 435–436 , 156–162. DOI: 10.1016/j.apcata.2012.05.049.
  • Qin, Z. ; Zhang, T. ; Li, Y. ; Ma, W. ; Qu, H. NO (or NH3) + O2 Adsorption on Fluorine-Doped Vanadia/Titania and Its Role in the Mechanism of a Two-Step Process Characterized by EPR. Chem. Eng. J. 2011, 174 , 390–395. DOI: 10.1016/j.cej.2011.09.015.
  • Zhang, S. ; Liu, X. ; Zhong, Q. ; Yao, Y. Effect of Y Doping on Oxygen Vacancies of TiO2 Supported MnOX for Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catal. Commun. 2012, 25 , 7–11. DOI: 10.1016/j.catcom.2012.03.026.
  • Hua, L. I. ; Tang, X. ; Honghong, Y. I. ; Lili, Y. U. Low-Temperature Catalytic Oxidation of NO over Mn-Ce-Ox Catalyst. J. Rare Earths 2010, 28 , 64–68. DOI: 10.1016/S1002-0721(09)60052-1.
  • Zhang, J. ; Zhang, S. ; Cai, W. ; Zhong, Q. The Characterization of CrCe-Doped on TiO2-Pillared Clay Nanocomposites for NO Oxidation and the Promotion Effect of CeOx. Appl. Surf. Sci. 2013, 268 , 535–540. DOI: 10.1016/j.apsusc.2012.12.169.
  • Sanchez-Dominguez, M. ; Liotta, L. F. ; Carlo, G. D. ; Pantaleo, G. ; Venezia, A. M. ; Solans, C. ; Boutonnet, M. Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 Nanoparticles by a Novel Oil-in-Water Microemulsion Reaction Method and Their Use as Catalyst Support for CO Oxidation. Catal. Today 2010, 158 , 35–43. DOI: 10.1016/j.cattod.2010.05.026.
  • Qi, L. ; Tang, C. ; Zhang, L. ; Yao, X. ; Cao, Y. ; Liu, L. ; Gao, F. ; Dong, L. ; Chen, Y. Influence of Cerium Modification Methods on Catalytic Performance of Au/Mordenite Catalysts in CO Oxidation. Appl. Catal. B-Environ. 2012, 127 , 234–245. DOI: 10.1016/j.apcatb.2012.08.013.
  • Luo, M.-F. ; Song, Y.-P. ; Lu, J.-Q. ; Wang, X.-Y. ; Pu, Z.-Y. Identification of CuO Species in High Surface Area CuO − CeO2 Catalysts and Their Catalytic Activities for CO Oxidation. J. Phys. Chem. C 2007, 111 , 12686–12692. DOI: 10.1021/jp0733217.
  • Meng, L. ; Lin, J. J. ; Pu, Z. Y. ; Luo, L. F. ; Jia, A. P. ; Huang, W. X. ; Luo, M. F. ; Lu, J. Q. Identification of Active Sites for CO and CH4 Oxidation over PdO/Ce1−xPdxO2−δ Catalysts. Appl. Catal. B-Environ. 2012, 119–120 , 117–122. DOI: 10.1016/j.apcatb.2012.02.036.
  • Martı́nez-Arias, A. ; Fernández-Garcı́a, M. ; Hungrı́a, A. B. ; Iglesias-Juez, A. ; Gálvez, O. ; Anderson, J. A. ; Conesa, J. C. ; Soria, J. ; Munuera, G. ; Redox Interplay at Copper Oxide-(Ce,Zr)Ox Interfaces: Influence of the Presence of NO on the Catalytic Activity for CO Oxidation over CuO/CeZrO4 . J. Catal. 2003, 214 , 261–272. DOI: 10.1006/jcat.2001.3482.
  • Laguna, O. H. ; Centeno, M. A. ; Romero-Sarria, F. ; Odriozola, J. A. Oxidation of CO over Gold Supported on Zn-Modified Ceria Catalysts. Catal. Today 2011, 172 , 118–123. DOI: 10.1016/j.cattod.2011.02.015.
  • Xiao, G. ; Li, S. ; Li, H. ; Chen, L. Synthesis of Doped Ceria with Mesoporous Flowerlike Morphology and Its Catalytic Performance for CO Oxidation. Micropor. Mesopor. Mat. 2009, 120 , 426–431. DOI: 10.1016/j.micromeso.2008.12.015.
  • Tang, C. ; Sun, J. ; Yao, X. ; Cao, Y. ; Liu, L. ; Ge, C. ; Gao, F. ; Dong, L. Efficient Fabrication of Active CuO-CeO2/SBA-15 Catalysts for Preferential Oxidation of CO by Solid State Impregnation. Appl. Catal. B-Environ. 2014, 146 , 201–212. DOI: 10.1016/j.apcatb.2013.05.060.
  • Chen, Y. ; Liu, D. ; Yang, L. ; Meng, M. ; Zhang, J. ; Zheng, L. ; Chu, S. ; Hu, T. Ternary Composite Oxide Catalysts CuO/Co3O4–CeO2 with Wide Temperature-Window for the Preferential Oxidation of CO in H2-Rich Stream. Chem. Eng. J. 2013, 234 , 88–98. DOI: 10.1016/j.cej.2013.08.063.
  • Yuan, H. ; Lunt, R. R. ; Thompson, J. I. ; Ofoli, R. Y. Electrodeposition of Ni/Ni(OH)2 Catalytic Films for the Hydrogen Evolution Reaction Produced by Using Cyclic Voltammetry. Chemelectrochem 2017, 4 , 241–245. DOI: 10.1002/celc.201600572.
  • Chen, Z. H. ; Wang, F. R. ; Li, H. ; Yang, Q. ; Wang, L. F. ; Li, X. H. Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Fe-Mn Mixed-Oxide Catalysts Containing Fe3Mn3O8 Phase. Ind. Eng. Chem. Res. 2012, 51 , 202–212. DOI: 10.1021/ie201894c.
  • Kai, L. ; Tang, X. ; Yi, H. ; Ping, N. ; Kang, D. ; Chi, W. Low-Temperature Catalytic Oxidation of NO over Mn–Co–Ce–Ox Catalyst. Chem. Eng. J. 2012, 192 , 99–104. DOI: 10.1016/j.cej.2012.03.087.
  • Cai, W. ; Zhong, Q. ; Zhang, S. ; Zhang, J. Effects of Cr on the NO Oxidation over the Ceria–Zirconia Solid Solution. RSC Adv. 2013, 3 , 7009–7015. DOI: 10.1039/c3ra40226f.
  • Zhao, Z. ; Jin, R. ; Li, Y. ; Dai, Y. ; Muhammad, T. Mesostructured Co–Ce–Zr–Mn–O Composite as a Potential Catalyst for Efficient Removal of Carbon Monoxide from Hydrogen-Rich Stream. Catal. Sci. Technol. 2013, 3 , 2130–2139. DOI: 10.1039/c3cy00154g.
  • Keramidas, V. G. ; White, W. B. Raman Spectra of Oxides with the Fluorite Structure. J. Chem. Phys. 1973, 59 , 1561–1562. DOI: 10.1063/1.1680227.
  • Weber, W. H. ; Hass, K. C. ; Mcbride, J. R. Raman Study of CeO2: Second-Order Scattering, Lattice Dynamics, and Particle-Size Effects. Phys. Rev. B. 1993, 48 , 178. DOI: 10.1103/PhysRevB.48.178.
  • Machida, M. ; Uto, M. ; Kurogi, D. ; Kijima, T. MnOx − CeO2 Binary Oxides for Catalytic NOx-Sorption at Low Temperatures. Selective Reduction of Sorbed NOx. Chem. Mater. 2000, 12 , 3158–3164. DOI: 10.1021/cm000207r.
  • Wu, Z. ; Li, M. ; Howe, J. ; Meyer, H. M. ; Overbury, S. H. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir 2010, 26 , 16595–16606. DOI: 10.1021/la101723w.
  • Nakajima, A. ; Yoshihara, A. ; Ishigame, M. Defect-Induced Raman Spectra in Doped CeO2 . Phys. Rev., B Condens. Matter. 1994, 50 , 13297–13307. DOI: 10.1103/physrevb.50.13297.
  • Bêche, E. ; Charvin, P. ; Perarnau, D. ; Abanades, S. ; Flamant, G. Ce3d XPS Investigation of Cerium Oxides and Mixed Cerium Oxide (CexTiyOz). Surf. Interface Anal. 2008, 40 , 264–267. DOI: 10.1002/sia.2686.
  • Nelson, A. E. ; Schulz, K. H. Surface Chemistry and Microstructural Analysis of CexZr1−xO2−y Model Catalyst Surfaces. Appl. Surf. Sci. 2003, 210 , 206–221. DOI: 10.1016/S0169-4332(03)00157-0.
  • Zhu, J. ; Kailasam, K. ; Fischer, A. ; Thomas, A. Supported Cobalt Oxide Nanoparticles as Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase. ACS Catal. 2011, 1 , 342–347. DOI: 10.1021/cs100153a.
  • Petitto, S. C. ; Langell, M. A. Surface Composition and Structure of Co3O4(110) and the Effect of Impurity Segregation. J. Vac. Sci. Technol. A. 2004, 22 , 1690–1696. DOI: 10.1116/1.1763899.
  • Natile, M. M. ; Glisenti, A. CoOx/CeO2 Nanocomposite Powders: Synthesis, Characterization, and Reactivity. Chem. Mater. 2005, 18 , 3270–3280. DOI: 10.1021/cm048748u.
  • Tan, R. ; Zhu, Y. Poisoning Mechanism of Perovskite LaCoO3 Catalyst by Organophosphorous Gas. Appl. Catal. B-Environ. 2005, 58 , 61–68. DOI: 10.1016/j.apcatb.2004.12.003.
  • Wei, C. ; Qin, Z. ; Zhao, Y. Fractional-Hydrolysis-Driven Formation of Non-Uniform Dopant Concentration Catalyst Nanoparticles of Ni/CexZr1−xO2 and Its Catalysis in Methanation of CO2 . Chem. Eng. J. 2013, 39 , 30–34. DOI: 10.1016/j.catcom.2013.04.025.
  • Xie, X. ; Li, Y. ; Liu, Z. Q. ; Haruta, M. ; Shen, W. Low-Temperature Oxidation of CO Catalysed by Co(3)O(4) Nanorods. Nature 2009, 458 , 746DOI: 10.1038/nature07877.
  • Liotta, L. F. ; Carlo, G. D. ; Pantaleo, G. ; Venezia, A. M. ; Deganello, G. Co3O4/CeO2 Composite Oxides for Methane Emissions Abatement: Relationship between Co3O4–CeO2 Interaction and Catalytic Activity. Appl. Catal. B-Environ. 2006, 66 , 217–227. DOI: 10.1016/j.apcatb.2006.03.018.
  • Picasso, G. ; Gutiérrez, M. ; Pina, M. P. ; Herguido, J. Preparation and Characterization of Ce-Zr and Ce-Mn Based Oxides for n-Hexane Combustion: Application to Catalytic Membrane Reactors. Chem. Eng. J. 2007, 126 , 119–130. DOI: 10.1016/j.cej.2006.09.005.
  • Kapteijn, F. ; López Granados, M. ; Meliáncabrera, I. ; Perezalonso, F. J. ; Fierro, J. L. G. Synergy of FexCe1−xO2 Mixed Oxides for N2O Decomposition. J. Catal. 2006, 239 , 340–346. DOI: 10.1016/j.jcat.2006.02.008.
  • Wu, Z. ; Zhu, H. ; Qin, Z. ; Wang, H. ; Huang, L. ; Wang, J. Preferential Oxidation of CO in H2-Rich Stream over CuO/Ce1−xTixO2 Catalysts. Appl. Catal. B-Environ. 2010, 98 , 204–212. DOI: 10.1016/j.apcatb.2010.05.030.
  • Qi, G. ; Yang, R. T. ; Chang, R. MnOx-CeO2 Mixed Oxides Prepared by Co-Precipitation for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Appl. Catal. B-Environ. 2004, 51 , 93–106. DOI: 10.1016/j.apcatb.2004.01.023.
  • Zhang, R. ; Zhong, Q. ; Zhao, W. ; Yu, L. ; Qu, H. Promotional Effect of Fluorine on the Selective Catalytic Reduction of NO with NH3 over CeO2-TiO2 Catalyst at Low Temperature. Appl. Surf. Sci. 2014, 289 , 237–244. DOI: 10.1016/j.apsusc.2013.10.143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.