390
Views
4
CrossRef citations to date
0
Altmetric
Articles

Molecular level separation of crude oil/water emulsion on carbon nanotube surface induced by weak interaction: a molecular dynamic simulation study

, , , , &
Pages 1991-2001 | Received 06 May 2019, Accepted 13 Jul 2019, Published online: 29 Jul 2019

References

  • Al-Anzi, B. S. ; Siang, O. C. Recent Developments of Carbon Based Nanomaterials and Membranes for Oily Wastewater Treatment. RSC Adv. 2017, 7 , 20981–20994. DOI: 10.1039/C7RA02501G.
  • Xue, Z. ; Cao, Y. ; Liu, N. ; Feng, L. ; Jiang, L. Special Wettable Materials for Oil/Water Separation. J. Mater. Chem. A 2014, 2 , 2445–2460. DOI: 10.1039/C3TA13397D.
  • Wang, B. ; Liang, W. ; Guo, Z. ; Liu, W. Biomimetic Super-Lyophobic and Super-Lyophilic Materials Applied for Oil/Water Separation: A New Strategy beyond Nature. Chem. Soc. Rev. 2015, 44 , 336–361. DOI: 10.1039/C4CS00220B.
  • Mullins, O. C. ; Sheu, E. Y. ; Hammami, A. ; Marshall, A. G. Asphaltenes, Heavy Oils, and Petroleomics ; Springer: New York, 2007.
  • McLean, J. D. ; Kilpatrick, P. K. Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions. J. Colloid Interf. Sci. 1997, 189 , 242–253. DOI: 10.1006/jcis.1997.4807.
  • Yang, F. ; Tchoukov, P. ; Dettman, H. ; Teklebrhan, R. B. ; Liu, L. ; Dabros, T. ; Czarnecki, J. ; Masliyah, J. ; Xu, Z. Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 2: Molecular Representations and Molecular Dynamics Simulations. Energy Fuels 2015, 29 , 4783–4794. DOI: 10.1021/acs.energyfuels.5b00657.
  • Zhang, L. Y. ; Lopetinsky, R. ; Xu, Z. ; Masliyah, J. H. Asphaltene Monolayers at a Toluene/Water Interface. Energy Fuels 2005, 19 , 1330–1336. DOI: 10.1021/ef0497659.
  • Liu, J. ; Zhao, Y. ; Ren, S. Molecular Dynamics Simulation on Self-Aggregation of Asphaltenes at Oil-Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels 2015, 29 , 1233–1242. DOI: 10.1021/ef5019737.
  • Hunter, C. A. ; Sanders, J. K. The Nature of. π-π Interactions. J. Am. Chem. Soc. 1990, 112 , 5525–5534. DOI: 10.1021/ja00170a016.
  • Hunter, C. A. ; Lawson, K. R. ; Perkins, J. ; Urch, C. J. Aromatic Interactions. J. Chem. Soc, Perkin Trans. 2 2001, 651–669. DOI: 10.1039/b008495f.
  • Grimme, S. Do Special Noncovalent π–π Stacking Interactions Really Exist? Angew. Chem. Int. Ed. 2008, 47 , 3430–3434. DOI: 10.1002/anie.200705157.
  • Pahlavan, F. ; Hung, A. M. ; Zadshir, M. ; Hosseinnezhad, S. ; Fini, E. H. Alteration of π-Electron Distribution to Induce Deagglomeration in Oidized Polar Aromatics and Asphaltenes in an Aged Asphalt Binder. ACS Sustainable Chem. Eng. 2018, 6 , 6554–6569. DOI: 10.1021/acssuschemeng.8b00364.
  • Kuznetsova, A. ; Mawhinney, D. B. ; Naumenko, V. ; Yates, J. T. ; Jr, Liu, J. ; Smalley, R. Enhancement of Adsorption inside of Single-Walled Nanotubes: Opening the Entry Ports. Chem. Phys. Lett. 2000, 321 , 292–296. DOI: 10.1016/S0009-2614(00)00341-9.
  • Datsyuk, V. ; Kalyva, M. ; Papagelis, K. ; Parthenios, J. ; Tasis, D. ; Siokou, A. ; Kallitsis, I. ; Galiotis, C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon 2008, 46 , 833–840. DOI: 10.1016/j.carbon.2008.02.012.
  • Pan, B. ; Xing, B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42 , 9005–9013. DOI: 10.1021/es801777n.
  • Johnson, R. R. ; Johnson, A. T. C. ; Klein, M. L. Probing the Structure of DNA-Carbon Nanotube Hybrids with Molecular Dynamics. Nano Lett. 2008, 8 , 69–75. DOI: 10.1021/nl071909j.
  • Gupta, V. K. ; Kumar, R. ; Nayak, A. ; Saleh, T. A. ; Barakat, M. A. Adsorptive Removal of Dyes from Aqueous Solution onto Carbon Nanotubes: A Review. Adv. Colloid Interfac. Sci. 2013, 193 , 24–34. DOI: 10.1016/j.cis.2013.03.003.
  • Heibati, B. ; Rodriguez-Couto, S. ; Amrane, A. ; Rafatullah, M. ; Hawari, A. ; Al-Ghouti, M. A. Uptake of Reactive Black 5 by Pumice and Walnut Activated Carbon: Chemistry and Adsorption Mechanisms. J. Ind. Eng. Chem. 2014, 20 , 2939–2947. DOI: 10.1016/j.jiec.2013.10.063.
  • Tallury, S. S. ; Pasquinelli, M. A. Molecular Dynamics Simulations of Flexible Polymer Chains Wrapping Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2010, 114 , 4122–4129. DOI: 10.1021/jp908001d.
  • Liu, J. ; Li, X. ; Jia, W. ; Ding, M. ; Zhang, Y. ; Ren, S. Separation of Emulsified Oil from Oily Wastewater by Functionalized Multiwalled Carbon Nanotubes. J. Disper. Sci. Technol. 2016, 37 , 1294–1302. DOI: 10.1080/01932691.2015.1090320.
  • Han, Y. ; He, L. ; Luo, X. ; Huang, X. ; Shi, K. Several Surfaces with Special Wettability: Influence on Spreading and Motion of W/O Emulsion Droplets. J. Disper. Sci. Technol. 2018, 39 , 241–249. DOI: 10.1080/01932691.2017.1310655.
  • Han, Y. ; Yang, Z. ; He, L. ; Luo, X. ; Zhou, R. ; Shi, K. ; Su, J. The Influences of Special Wetting Surfaces on the Dynamic Behaviors of Underwater Oil Droplet. Colloid. Surf. A 2018, 543 , 15–27. DOI: 10.1016/j.colsurfa.2018.01.049.
  • Han, Y. ; He, L. ; Luo, X. ; Lü, Y. ; Shi, K. ; Chen, J. ; Huang, X. A Review of the Recent Advances in Design of Corrugated Plate Packs Applied for Oil–Water Separation. J. Ind. Eng. Chem. 2017, 53 , 37–50. DOI: 10.1016/j.jiec.2017.04.029.
  • Xu, H. ; Jia, W. ; Ren, S. ; Wang, J. ; Yang, S. Stable and Efficient Demulsifier of Functional Fluorinated Graphene for Oil Separation from Emulsified Oily Wastewaters. J. Taiwan. Inst. Chem. Eng. 2018, 93 , 492–499. DOI: 10.1016/j.jtice.2018.08.026.
  • Xu, H. ; Jia, W. ; Ren, S. ; Wang, J. Novel and Recyclable Demulsifier of Expanded Perlite Grafted by Magnetic Nanoparticles for Oil Separation from Emulsified Oil Wastewaters. Chem. Eng. J. 2018, 337 , 10–18. DOI: 10.1016/j.cej.2017.12.084.
  • Liu, H. ; Wang, H. ; Jia, W. ; Xu, H. ; Ren, S. Preparation and Properties of Magnetic–Photoresponsive Oil-Absorption Resins. J. Appl. Polym. Sci. 2018, 135 , 45756. DOI: 10.1002/app.45756.
  • Rafferty, J. L. ; Siepmann, J. I. ; Schure, M. R. Molecular-Level Comparison of Alkylsilane and Polar-Embedded Reversed-Phase Liquid Chromatography Systems. Anal. Chem. 2008, 80 , 6214–6221. DOI: 10.1021/ac8005473.
  • Melnikov, S. M. ; Höltzel, A. ; Seidel-Morgenstern, A. ; Tallarek, U. A Molecular Dynamics View on Hydrophilic Interaction Chromatography with Polar-Bonded Phases: Properties of the Water-Rich Layer at a Silica Surface Modified with Diol-Functionalized Alkyl Chains. J. Phys. Chem. C 2016, 120 , 13126–13138. DOI: 10.1021/acs.jpcc.6b03799.
  • Teklebrhan, R. B. ; Ge, L. ; Bhattacharjee, S. ; Xu, Z. ; Sjöblom, J. Initial Partition and Aggregation of Uncharged Polyaromatic Molecules at the Oil-Water Interface: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2014, 118 , 1040–1051. DOI: 10.1021/jp407363p.
  • Ungerer, P. ; Rigby, D. ; Leblanc, B. ; Yiannourakou, M. Sensitivity of the Aggregation Behaviour of Asphaltenes to Molecular Weight and Structure Using Molecular Dynamics. Mol. Simulat. 2014, 40 , 115–122. DOI: 10.1080/08927022.2013.850499.
  • Sheremata, J. M. ; Gray, M. R. ; Dettman, H. D. ; McCaffrey, W. C. Quantitative Molecular Representation and Sequential Optimization of Athabasca Asphaltenes. Energy Fuels 2004, 18 , 1377–1384. DOI: 10.1021/ef049936+.
  • Boek, E. S. ; Yakovlev, D. S. ; Headen, T. F. Quantitative Molecular Representation of Asphaltenes and Molecular Dynamics Simulation of Their Aggregation. Energy Fuels 2009, 23 , 1209–1219. DOI: 10.1021/ef800876b.
  • Rogel, E. Simulation of Interactions in Asphaltene Aggregates. Energy Fuels 2000, 14 , 566–574. DOI: 10.1021/ef990166p.
  • Berendsen, H. ; Grigera, J. ; Straatsma, T. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91 , 6269–6271. DOI: 10.1021/j100308a038.
  • Dauber-Osguthorpe, P. ; Roberts, V. A. ; Osguthorpe, D. J. ; Wolff, J. ; Genest, M. ; Hagler, A. T. Structure and Energetics of Ligand Binding to Proteins: Escherichia Coli Dihydrofolate Reductase-Trimethoprim, a Drug-Receptor System. Proteins: Structure, Function, and Bioinformatics 1988, 4 , 31–47. DOI: 10.1002/prot.340040106.
  • Rogel, E. ; Carbognani, L. Density Estimation of Asphaltenes Using Molecular Dynamics Simulations. Energy Fuels 2003, 17 , 378–386. DOI: 10.1021/ef020200r.
  • Hou, T. ; Zhu, L. ; Xu, X. Adsorption and Diffusion of Benzene in ITQ-1 Type Zeolite: Grand Canonical Monte Carlo and Molecular Dynamics Simulation Study. J. Phys. Chem. B 2000, 104 , 9356–9364. DOI: 10.1021/jp000460e.
  • Hagler, A. ; Huler, E. ; Lifson, S. Energy Functions for Peptides and Proteins. I. Derivation of a Consistent Force Field Including the Hydrogen Bond from Amide Crystals. J. Am. Chem. Soc. 1974, 96 , 5319–5327. DOI: 10.1021/ja00824a004.
  • Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117 , 1–19. DOI: 10.1006/jcph.1995.1039.
  • Humphrey, W. ; Dalke, A. ; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14 , 33–38. DOI: 10.1016/0263-7855(96)00018-5.
  • Grimme, S. Do Special Noncovalent pi-pi stacking interactions really exist? Angew. Chem. Int. Ed. Engl. 2008, 47 , 3430–3434. DOI: 10.1002/anie.200705157.
  • Gupta, V. P. Principles and Applications of Quantum Chemistry . Elsevier: Amsterdam, 2016.
  • Yuan, Q. Z. ; Zhao, Y. P. Precursor Film in Dynamic Wetting, Electrowetting, and Electro-Elasto-Capillarity. Phys. Rev. Lett. 2010, 104 , 4. DOI: 10.1103/PhysRevLett.104.246101.
  • Hardy, W. The Spreading of Fluids on Glass. Philos. Mag. 1919, 38 , 49–55. DOI: 10.1080/14786440708635928.
  • Joseph, S. ; Aluru, N. Why Are Carbon Nanotubes Fast Transporters of Water? Nano Lett. 2008, 8 , 452–458. DOI: 10.1021/nl072385q.
  • Taherian, F. ; Marcon, V. ; van der Vegt, N. F. A. ; Leroy, F. What Is the Contact Angle of Water on Graphene? Langmuir 2013, 29 , 1457–1465. DOI: 10.1021/la304645w.
  • Shih, C. J. ; Wang, Q. H. ; Lin, S. ; Park, K. C. ; Jin, Z. ; Strano, M. S. ; Blankschtein, D. Breakdown in the Wetting Transparency of Graphene. Phys. Rev. Lett. 2012, 109 , 176101. DOI: 10.1103/PhysRevLett.109.176101.
  • Harbottle, D. ; Chen, Q. ; Moorthy, K. ; Wang, L. ; Xu, S. ; Liu, Q. ; Sjoblom, J. ; Xu, Z. Problematic Stabilizing Films in Petroleum Emulsions: Shear Rheological Response of Viscoelastic Asphaltene Films and the Effect on Drop Coalescence. Langmuir 2014, 30 , 6730–6738. DOI: 10.1021/la5012764.
  • Allen, M. P. ; Tildesley, D. J. Computer Simulation of Liquids ; Oxford University Press, New York, 1989.
  • Kuznicki, T. ; Masliyah, J. H. ; Bhattacharjee, S. Molecular Dynamics Study of Model Molecules Resembling Asphaltene-Like Structures in Aqueous Organic Solvent Systems. Energy Fuels 2008, 22 , 2379–2389. DOI: 10.1021/ef800057n.
  • Kawashima, H. ; Takanohashi, T. ; Iino, M. ; Matsukawa, S. Determining Asphaltene Aggregation in Solution from Diffusion Coefficients as Determined by Pulsed-Field Gradient Spin − Echo 1H NMR. Energy Fuels 2008, 22 , 3989–3993. DOI: 10.1021/ef800455g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.