439
Views
9
CrossRef citations to date
0
Altmetric
Articles

Optimal design of pickering emulsions for heavy-oil recovery improvement

&
Pages 2048-2062 | Received 05 Feb 2019, Accepted 26 Jul 2019, Published online: 12 Aug 2019

References

  • Wu, Y. ; Mahmoudkhani, A. ; Watson, P. A Non-Thermal Surfactant-Polymer Based Technology for Enhanced Heavy Oil Recovery in Oil Sand and Ultra Shallow Reservoirs. SPE Heavy Oil Conference Canada, Calgary, AB, Canada, June 12–14, 2012.
  • Delamaide, E. ; Bazin, B. ; Rousseau, D. ; Degre, G. Chemical EOR for Heavy Oil: The Canadian Experience. SPE EOR Oil and Gas West Asia, Muscat Conference, Oman, Mar 31–Apr 2, 2014. DOI: 10.2118/169715-MS.
  • Kaminsky, R. ; Wattenbarger, R. ; Lederhos, J. ; Leonardi, S. A. Viscous Oil Recovery Using Solids-Stabilized Emulsions. SPE Annual Technical Conference and Exhibition, Florence, Italy, Sept 19–22, 2010. DOI: 10.2118/135284-MS
  • Qiu, F. The Potential Applications in Heavy Oil EOR With the Nanoparticle and Surfactant Stabilized Solvent-Based Emulsion. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Oct 19–21, 2010. DOI: 10.2118/134613-MS.
  • Zhang, D. ; Du, X. ; Song, X. ; et al. Application of the Marangoni Effect in Nanoemulsion on Improving Waterflooding Technology for Heavy-Oil Reservoirs. SPE J. 2018, 23 , 831–840. DOI: 10.2118/187953-PA.
  • Lee, J. ; Babadagli, T. Improvement of Microemulsion Generation and Stability Using New Generation Chemicals and Nano Materials During Waterflooding as a Cost-Efficient Heavy-Oil Recovery Method. SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain, Trinidad and Tobago, June 25–26, 2018. DOI: 10.2118/191171-MS.
  • Lee, J. ; Babadagli, T. ; Giesbrecht, R. Impact of Divalent Ions on Heavy Oil Recovery by Inemulsification. J. Surf. Deterg. 2019, (to be published).
  • Pei, H. ; Shu, Z. ; Zhang, G. ; et al. Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery. J. Pet. Sci. Eng . 2018, 163, 476–483. DOI: 10.1016/j.petrol.2018.01.025.
  • Arab, D. ; Kantzas, A. ; Bryant, S. Nanoparticle-Enhanced Surfactant Floods to Unlock Heavy Oil. SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, Apr 14–18, 2018. DOI: 10.2118/190212-MS.
  • Mohammadzadeh, O. ; Sedaghat, M. H. ; Kord, S. ; Zendehboudi, S. ; Giesy, J. P. Pore-Level Visual Analysis of Heavy Oil Recovery Using Chemical-Assisted Waterflooding Process – Use of a New Chemical Agent. Fuel 2019, 239 , 202–218. DOI: 10.1016/j.fuel.2018.10.104.
  • Seright, R. Potential for Polymer Flooding Reservoirs with Viscous Oils. Spe. Res. Eval. Eng. 2010, 13 . DOI: 10.2118/129899-PA.
  • Knight, B. ; Rhudy, J. Recovery of High-Viscosity Crudes by Polymer Flooding. J. Can. Pet. Technol 1977, 16 , 46–56. https://doi.org/10.2118/77-04-07.
  • Asghari, K. ; Nakutnyy, P. Experimental results of polymer flooding of heavy oil reservoirs. Canadian International Petroleum Conference, Calgary, Alberta, Jun 17–19, 2008. https://doi.org/10.2118/2008-189.
  • Wang, J. ; Dong, M. Optimum Effective Viscosity of Polymer Solution for Improving Heavy Oil Recovery. J. Pet. Sci. Eng. 2009, 67 , 155–158. DOI: 10.1016/j.petrol.2009.05.007.
  • Wassmuth, F. ; Green, J. ; Arnold, W. ; et al. Polymer Flood Application to Improve Heavy Oil Recovery at East Bodo. J. Can. Pet. Technol. 2009, 48 . DOI: 10.2118/09-02-55.
  • Bondino, I. ; Nguyen, R. ; Hamon, G. et al. Tertiary polymer flooding in extra-heavy oil: an investigation using 1D and 2D experiments, core scale simulation and porescale network models. International Symposium of the Society of Core Analysts, Austin, Texas, Sept 18–21, 2011.
  • Pei, H. ; Zhang, G. ; Ge, J. ; Jin, L. ; Liu, X. Analysis of Microscopic Displacement Mechanisms of Alkaline Flooding for Enhanced Heavy-Oil Recovery. Energy Fuels 2011, 25 , 4423–4429. DOI: 10.1021/ef200605a.
  • Ge, J. ; Feng, A. ; Zhang, G. ; Jiang, P. ; Pei, H. ; Li, R. ; Fu, X. Study of the Factors Influencing Alkaline Flooding in Heavy-Oil Reservoirs. Energy Fuels 2012, 26 , 2875–2882. DOI: 10.1021/ef3000906.
  • Dong, M. ; Liu, Q. ; Li, A. Displacement Mechanisms of Enhanced Heavy Oil Recovery by Alkaline Flooding in a Micromodel. Particuology 2012, 10 , 298–305. DOI: 10.1016/j.partic.2011.09.008.
  • Ding, B. ; Zhang, G. ; Ge, J. ; Liu, X. Research on Mechanisms of Alkaline Flooding for Heavy Oil. Energy Fuels 2010, 24 , 6346–6352. DOI: 10.1021/ef100849u.
  • Tang, M. ; Zhang, G. ; Ge, J. ; Jiang, P. ; Liu, Q. ; Pei, H. ; Chen, L. Investigation into the Mechanisms of Heavy Oil Recovery by Novel Alkaline Flooding. Colloids Surf. A Physicochem Eng Asp. 2013, 421 , 91–100. DOI: 10.1016/j.colsurfa.2012.12.055.
  • Alomair, O. A. ; Matar, K. ; Alsaeed, Y. Nanofluids Application for Heavy Oil Recovery. SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, Australia, Oct 14–16, 2014. DOI: 10.2118/171539-MS.
  • Corredor, L. M. ; Aliabadian, E. ; Husein, M. ; Chen, Z. ; Maini, B. ; Sundararaj, U. Heavy Oil Recovery by Surface Modified Silica Nanoparticle/HPAM Nanofluids. Fuel 2019, 252 , 622–634. DOI: 10.1016/j.fuel.2019.04.145.
  • Bryan, J. ; Kantzas, A. Enhanced Heavy-Oil Recovery by Alkali-Surfactant Flooding. SPE Annual Technical Conference and Exhibition, Anaheim, California, Nov 11–14, 2007. DOI: 10.2118/110738-MS.
  • Pei, H. ; Zhang, G. ; Ge, J. ; Tang, M. ; Zheng, Y. Comparative Effectiveness of Alkaline Flooding and Alkalinesurfactant Flooding for Improved Heavy-Oil Recovery. Energy Fuels 2012, 26 , 2911–2919. DOI: 10.1021/ef300206u.
  • Nizamidin, N. ; Weerasooriya, U. ; Pope, G. Systematic Study of Heavy Oil Emulsion Properties Optimized with a New Chemical Formulation Approach: particle Size Distribution. Energy Fuels 2015, 29 , 7065–7079. DOI: 10.1021/acs.energyfuels.5b01818.
  • Kumar, R. ; Mohanty, K. Sweep Efficiency of Heavy Oil Recovery by Chemical Methods. SPE Annual Technical Conference and Exhibition, Denver, Colorado, Oct 30–Nov 2, 2011. DOI: 10.2118/146839-MS
  • Dong, M. ; Ma, S. ; Liu, Q. Enhanced Heavy Oil Recovery through Interfacial Instability : A Study of Chemical Flooding for Brintnell Heavy Oil. Fuel 2009, 88 , 1049–1056. DOI: 10.1016/j.fuel.2008.11.014.
  • Liu, Q. ; Dong, M. ; Yue, X. ; Hou, J. Synergy of Alkali and Surfactant in Emulsification of Heavy Oil in Brine. Colloids Surf. A. 2006, 273 , 219–228. DOI: 10.1016/j.colsurfa.2005.10.016.
  • Feng, A. ; Zhang, G. ; Ge, J. ; Jiang P. ; Pei H. ; Zhang, J. Q. ; Li, R. Study of Surfactant-Polymer Flooding in Heavy Oil Reservoirs. SPE heavy Oil Conference Canada, Calgary, Alberta, Jun 12–14, 2012. DOI: 10.2118/157621-MS.
  • Rousseau, D. ; Bekri, S. ; Boujlel, J. ; Hocine, S. ; Degre, G. Designing Surfactant-Polymer Processes for Heavy Oil Reservoirs: Case Studies. SPE Canada Heavy Oil Technical Conference, Calgary, Alberta, March 13–14, 2018. DOI: 10.2118/189745-MS.
  • Huang, S. ; Dong, M. Alkaline/Surfactant/Polymer (ASP) Flood Potential in Southwest Saskatchewan Oil Reservoirs. J. Cad. Pet. Technol. 2004, 43 , 1–15. https://doi.org/10.2118/04-12-04.
  • Sedaghat, M. ; Mohammadzadeh, O. ; Kord, S. ; Chatzis, I. Heavy Oil Recovery Using ASP Flooding: A Pore-Level Experimental Study in Fractured Five-Spot Micromodels. Can. J. Chem. Eng. 2016, 94 , 779–791. DOI: 10.1002/cjce.22445.
  • Zhu, Y. ; Fu, T. ; Liu, K. ; Lin, Q. ; Pei, X. ; Jiang, J. ; Cui, Z. ; Binks, B. P. Thermoresponsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with Alkyl Polyoxyethylene Ether Nonionic Surfactant. Langmuir 2017, 33 , 5724–5733. DOI: 10.1021/acs.langmuir.7b00273.
  • Chavalier, Y. ; Bolzinger, M. A. Emulsions Stabilized with Solid Nanoparticles. Colloids Surf. 2013, 439 , 23–34. DOI: 10.1016/j.colsurfa.2013.02.054.
  • Pei, H. ; Zhang, G. ; Ge, J. ; Zhang, J. ; Zhang, Q. Investigation of Synergy between Nanoparticle and Surfactant in Stabilizing Oil-in-Water Emulsions for Improved Heavy Oil Recovery. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 484 , 478–484. DOI: 10.1016/j.colsurfa.2015.08.025.
  • Sharma, T. ; Velmurugan, N. ; Patel, P. ; Chon, B. H. ; Sangwai, J. S. Use of Oil-in-Water Pickering Emulsion Stabilized by Nanoparticles in Combination with Polymer Flood for Enhanced Oil Recovery. Pet. Sci. Technol. 2015, 33 , 1595–1604. DOI: 10.1080/10916466.2015.1079534.
  • Zhang, T. ; Davidson, D. ; Bryant, S. L. ; Huh, C. Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery. SPE Improv. Oil Recover. Symp. 2010. DOI: 10.2118/129885-MS
  • Peng, B. ; Zhang, L. ; Luo, J. ; Wang, P. ; Ding, B. ; Zeng, M. ; Cheng, Z. A Review of Nanomaterials for Nanofluid Enhanced Oil Recovery. RSC Adv. 2017, 7 , 32246–32254. DOI: 10.1039/C7RA05592G.
  • Suleimanov, B. A. ; Ismailov, F. S. ; Veliyev, E. F. Nanofluid for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2011, 78 , 431–437. DOI: 10.1016/j.petrol.2011.06.014.
  • Yoon, K. ; Son, H. ; Choi, S. ; et al. Core Flooding of Complex Nanoscale Colloidal Dispersions for Enhanced Oil Recovery by in-Situ Formation of Stable Oil-in-Water Pickering Emulsions. Energy Fuels 2016, 3 , 2628–2635. DOI: 10.1021/acs.energyfuels.5b02806.
  • Lee, J. ; Babadagli, T. Screening of Chemicals for Low Cost Heavy Oil Recovery through Microemulsion Stability Tests. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia. Oct 17–19, 2017. DOI: 10.2118/186344-MS.
  • Sheng, J. Investigation of Alkaline-Crude Oil Reaction. Petroleum 2015, 1 , 31–39. DOI: 10.1016/j.petlm.2015.04.004.
  • Binks, B. P. ; Rodrigues, J. A. Enhanced Stabilization of Emulsions Due to Surfactant-Induced Nanoparticle Flocculation. Langmuir 2007, 23 , 7436–7439. DOI: 10.1021/la700597k.
  • Goloub, T. ; Koopal, L. Adsorption of Cationic Surfactants on Silica. Comparison of Experiment and Theory. Langmuir 1997, 13 , 673–681. DOI: 10.1021/la960690d.
  • Chen, X. ; Song, X. ; Huang, J. ; et al. Phase Behavior of Pickering Emulsions Stabilized by Graphene Oxide Sheets and Resins. Energy Fuels 2017, 31 , 13439–13447. DOI: 10.1021/acs.energyfuels.7b02672.
  • Paria, S. ; Khilar, K. A Review on Experimental Studies of Surfactant Adsorption at the Hydrophilic Solid-Water Interface. Adv. Colloid Interface Sci. 2004, 110 , 75–95. DOI: 10.1016/j.cis.2004.03.001.
  • Li, Y. ; Zhang, W. ; Kong, B. ; Puerto, M. ; Bao, X. ; Sha, O. ; Shen, Z. ; Yang, Y. ; Liu, Y. ; Gu, S. ; et al. Mixtures of Anionic/Cationic Surfactants: A New Approach for Enhanced Oil Recovery in Low-Salinity, High-Temperature Sandstone Reservoir. SPE J. 2016, 21 , 1164. DOI: 10.2118/169051-MS.
  • Arguelles, F. Pore Scale Investigations on the Dynamics of SAGD Process and Residual Oil Saturation Development. Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of Alberta, 2015.
  • Ma, S. ; Dong, M. ; Li, Z. ; Shirif, E. Evaluation of the Effectiveness of Chemical Flooding Using Heterogeneous Sandpack Flood Test. J. Pet. Sci. Eng. 2007, 55 , 294–300. DOI: 10.1016/j.petrol.2006.05.002.
  • Hankins, N. ; Harwell, J. Case Studies for the Feasibility of Sweep Improvement in surfactant-Assisted Waterflooding. J. Pet. Sci. Eng. 1997, 17 , 41–62. DOI: 10.1016/S0920-4105(96)00055-1.
  • Kumar, S. ; Aswal, V. ; Kohlbrecher, J. Size-Dependent Interaction of Silica Nanoparticles with Different Surfactants in Aqueous Solution. Langmuir 2012, 28 , 9288–9297. DOI: 10.1021/la3019056.
  • Al-Anssari, S. ; Arif, M. ; Wang, S. ; Barifcani, A. ; Iglauer, S. Stabilizing Nanofluids in Saline Environments. J. Colloid Interface Sci. 2017, 508 , 222–229. 0021–9797. DOI: 10.1016/j.jcis.2017.08.043.
  • Gandomkar, A. ; Rahimpour, M. Investigation of Low-Salinity Waterflooding in Secondary and Tertiary Enhanced Oil Recovery in Limestone Reservoirs. Energy Fuels 2015, 29 , 7781–7792. DOI: 10.1021/acs.energyfuels.5b01236.
  • Sandoval-Rodríguez, L. S. ; Cañas-Marín, W. A. ; Martínez-Rey, R. Rheological Behavior of Water-in-Oil Emulsions of Heavy and Extra-Heavy Live Oils: Experimental Evaluation. CT&F Cienc. Tecnol. Futuro 2014, 5 , 5–22. DOI: 10.29047/01225383.37.
  • Nasery, S. ; Hoseinpour, S. ; Phung, L. T. K. ; Bahadori, A. Prediction of the Viscosity of Water-in-Oil Emulsions. Pet. Sci. Technol. 2016, 34 , 1972–1977. DOI: 10.1080/10916466.2016.1233248.
  • Binks, B. P. ; Murakami, R. ; Armes, S. P. ; Fujii, S. Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles. Langmuir 2006, 22 , 2050–2057. DOI: 10.1021/la053017.
  • Arla, D. ; Sinquin, A. ; Palermo, T. Influence of pH and Water Content on the Type and Stability of Acidic Crude Oil Emulsions. Energy Fuels 2007, 21 , 1337–1342. DOI: 10.1021/ef060376j.
  • Upadhyaya, A. ; Acosta, E. J. ; Scamehorn, J. F. ; Sabatini, D. A. Adsorption of Anionic-Cationic Surfactant Mixtures on Metal Oxide Surfaces. J. Surfact. Deterg. 2007, 10 , 269–277. DOI: 10.1007/s11743-007-1045-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.