175
Views
3
CrossRef citations to date
0
Altmetric
Articles

A novel nitrified aerobic granular sludge biosorbent for Pb(II) removal: behaviors and mechanisms

, &
Pages 2223-2231 | Received 31 May 2019, Accepted 13 Aug 2019, Published online: 21 Aug 2019

References

  • Fakhre, N. A. ; Ibrahim, B. M. The Use of New Chemically Modified Cellulose for Heavy Metal Ion Adsorption. J. Hazard. Mater. 2018, 343 , 324–331. DOI: 10.1016/j.jhazmat.2017.08.043.
  • Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112 , 5073–5091. DOI: 10.1021/cr300133d.
  • Sholl, D. S. ; Lively, R. P. Seven Chemical Separations to Change the World. Nature 2016, 532 , 3. DOI: 10.1038/532435a.
  • Zhou, Y. ; Xia, S. ; Zhang, J. ; Nguyen, B. T. ; Zhang, Z. Insight into the Influences of pH Value on Pb(II) Removal by the Biopolymer Extracted from Activated Sludge. Chem. Eng. J. 2017, 308 , 1098–1104. DOI: 10.1016/j.cej.2016.09.141.
  • Chi, T. ; Zuo, J. ; Liu, F. Performance and Mechanism for Cadmium and Lead Adsorption from Water and Soil by Corn Straw Biochar. Front. Env. Sci. Eng. 2017, 11 , 15. DOI: 10.1007/s11783-017-0921-y.
  • Huang, N. ; Zhai, L. ; Xu, H. ; Jiang, D. Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. J. Am. Chem. Soc. 2017, 139 , 2428–2434. DOI: 10.1021/jacs.6b12328.
  • Peng, Y. ; Huang, H. ; Zhang, Y. ; Kang, C. ; Chen, S. ; Song, L. ; Liu, D. ; Zhong, C. A Versatile MOF-Based Trap for Heavy Metal Ion Capture and Dispersion. Nat. Commun. 2018, 9 , 187. DOI: 10.1038/s41467-017-02600-2.
  • Zhou, Y. ; Zhang, Z. ; Zhang, J. ; Xia, S. New Insight into Adsorption Characteristics and Mechanisms of the Biosorbent from Waste Activated Sludge for Heavy Metals. J. Environ. Sci. 2016, 45 , 248–256. DOI: 10.1016/j.jes.2016.03.007.
  • Asfaram, A. ; Ghaedi, M. ; Goudarzi, A. ; Rajabi, M. Response Surface Methodology Approach for Optimization of Simultaneous Dye and Metal Ion Ultrasound-Assisted Adsorption onto Mn Doped Fe3O4-NPs Loaded on AC: Kinetic and Isothermal Studies. Dalton Trans. 2015, 44 , 14707–14723. DOI: 10.1039/C5DT01504A.
  • Arancibia-Miranda, N. ; Baltazar, S. E. ; Garcia, A. ; Munoz-Lira, D. ; Sepulveda, P. ; Rubio, M. A. ; Altbir, D. Nanoscale Zero Valent Supported by Zeolite and Montmorillonite: Template Effect of the Removal of Lead Ion from an Aqueous Solution. J. Hazard. Mater. 2016, 301 , 371–380. DOI: 10.1016/j.jhazmat.2015.09.007.
  • Yang, F. ; Sun, S. ; Chen, X. ; Chang, Y. ; Zha, F. ; Lei, Z. Mg–Al Layered Double Hydroxides Modified Clay Adsorbents for Efficient Removal of Pb2+, Cu2+ and Ni2+ from Water. Appl. Clay Sci. 2016, 123 , 134–140. DOI: 10.1016/j.clay.2016.01.026.
  • Wang, Y. ; Li, L. ; Luo, C. ; Wang, X. ; Duan, H. Removal of Pb2+ from Water Environment Using a Novel Magnetic Chitosan/Graphene Oxide Imprinted Pb2+ . Int. J. Biol. Macromol. 2016, 86 , 505–511. DOI: 10.1016/j.ijbiomac.2016.01.035.
  • Fang, Q. ; Zhou, X. ; Deng, W. ; Liu, Z. Hydroxyl-Containing Organic Molecule Induced Self-Assembly of Porous Graphene Monoliths with High Structural Stability and Recycle Performance for Heavy Metal Removal. Chem. Eng. J. 2017, 308 , 1001–1009. DOI: 10.1016/j.cej.2016.09.139.
  • Abbas, A. ; Al-Amer, A. M. ; Laoui, T. ; Al-Marri, M. J. ; Nasser, M. S. ; Khraisheh, M. ; Atieh, M. A. Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications. Sep. Purif. Technol. 2016, 157 , 141–161. DOI: 10.1016/j.seppur.2015.11.039.
  • Zhou, Y. ; Zhang, Z. ; Zhang, J. ; Xia, S. Understanding Key Constituents and Feature of the Biopolymer in Activated Sludge Responsible for Binding Heavy Metals. Chem. Eng. J. 2016, 304 , 527–532. DOI: 10.1016/j.cej.2016.06.115.
  • Wei, D. ; Xue, X. ; Chen, S. ; Zhang, Y. ; Yan, L. ; Wei, Q. ; Du, B. Enhanced Aerobic Granulation and Nitrogen Removal by the Addition of Zeolite Powder in a Sequencing Batch Reactor. Appl. Microbiol. Biotechnol. 2013, 97 , 9235–9243. DOI: 10.1007/s00253-012-4625-8.
  • Zhou, Y. ; Xia, S. ; Zhang, Z. ; Zhang, J. ; Hermanowicz, S. W. Associated Adsorption Characteristics of Pb(II) and Zn(II) by a Novel Biosorbent Extracted from Waste-Activated Sludge. J. Environ. Eng. 2016, 142 , 04016032. DOI: 10.1061/(ASCE)EE.1943-7870.0001104.
  • Huang, L. ; Li, M. ; Si, G. ; Wei, J. ; Ngo, H. H. ; Guo, W. ; Xu, W. ; Du, B. ; Wei, Q. ; Wei, D. Assessment of Microbial Products in the Biosorption Process of Cu(II) onto Aerobic Granular Sludge: Extracellular Polymeric Substances Contribution and Soluble Microbial Products Release. J. Colloid Interf. Sci. 2018, 527 , 87–94. DOI: 10.1016/j.jcis.2018.05.032.
  • Sajjad, M. ; Aziz, A. ; Kim, K. S. Biosorption and Binding Mechanisms of Ni2+ and Cd2+ with Aerobic Granules Cultivated in Different Synthetic Media. Chem. Eng. Technol. 2017, 40 , 2179–2187. DOI: 10.1002/ceat.201600419.
  • Nancharaiah, Y. V. ; Kiran Kumar Reddy, G. Aerobic Granular Sludge Technology: Mechanisms of Granulation and Biotechnological Applications. Bioresour. Technol. 2018, 247 , 1128–1143. DOI: 10.1016/j.biortech.2017.09.131.
  • Long, B. ; Xuan, X. ; Yang, C. ; Zhang, L. ; Cheng, Y. ; Wang, J. Stability of Aerobic Granular Sludge in a Pilot Scale Sequencing Batch Reactor Enhanced by Granular Particle Size Control. Chemosphere 2019, 225 , 460–469. DOI: 10.1016/j.chemosphere.2019.03.048.
  • Li, X. ; Luo, J. ; Guo, G. ; Mackey, H. R. ; Hao, T. ; Chen, G. Seawater-Based Wastewater Accelerates Development of Aerobic Granular Sludge: A Laboratory Proof-of-Concept. Water Res. 2017, 115 , 210–219. DOI: 10.1016/j.watres.2017.03.002.
  • Liu, Z. ; Zhang, Z. ; Hu, F. ; Duan, X. ; Ye, X. Adsorption Performance and Micro-Structural Morphology of a Novel Magnetic Composite Adsorbent for Removing Cd2+ from Water. Microchem. J. 2019, 146 , 1209–1217. DOI: 10.1016/j.microc.2018.12.042.
  • Chen, Z. ; Ma, W. ; Han, M. Biosorption of Nickel and Copper onto Treated Alga (Undaria Pinnatifida): Application of Isotherm and Kinetic Models. J. Hazard. Mater. 2008, 155 , 327–333. DOI: 10.1016/j.jhazmat.2007.11.064.
  • Stumm, W. ; Sigg, L. ; Schnoor, J. L. Aquatic Chemistry of Acid Deposition. Environ. Sci. Technol. 1987, 21 , 8–13. DOI: 10.1021/es00155a001.
  • Kumar, K. V. ; Porkodi, K. Mass Transfer, Kinetics and Equilibrium Studies for the Biosorption of Methylene Blue Using Paspalum Notatum. J. Hazard. Mater. 2007, 146 , 214–226. DOI: 10.1016/j.jhazmat.2006.12.010.
  • Zhao, J. ; Liu, J. ; Li, N. ; Wang, W. ; Nan, J. ; Zhao, Z. ; Cui, F. Highly Efficient Removal of Bivalent Heavy Metals from Aqueous Systems by Magnetic Porous Fe3O4-MnO2: Adsorption Behavior and Process Study. Chem. Eng. J. 2016, 304 , 737–746. DOI: 10.1016/j.cej.2016.07.003.
  • Jian, M. ; Tang, C. ; Liu, M. Dried Biomass of Activated Sludge for Cu2+Adsorption: Behaviors and Mechanisms. J. Dispersion Sci. Technol. 2014, 35 , 1468–1475. DOI: 10.1080/01932691.2013.850717.
  • Apiratikul, R. ; Pavasant, P. Sorption of Cu2+, Cd2+, and Pb2+ Using Modified Zeolite from Coal Fly Ash. Chem. Eng. J. 2008, 144 , 245–258. DOI: 10.1016/j.cej.2008.01.038.
  • Mahmoud, M. E. ; Amira, M. F. ; Seleim, S. M. ; Mohamed, A. K. Adsorption Isotherm Models, Kinetics Study, and Thermodynamic Parameters of Ni(II) and Zn(II) Removal from Water Using the LbL Technique. J. Chem. Eng. Data 2017, 62 , 839–850. DOI: 10.1021/acs.jced.6b00865.
  • Li, Y. ; Bian, Y. ; Qin, H. ; Zhang, Y. ; Bian, Z. Photocatalytic Reduction Behavior of Hexavalent Chromium on Hydroxyl Modified Titanium Dioxide. Appl. Catal. B-Environ. 2017, 206 , 293–299. DOI: 10.1016/j.apcatb.2017.01.044.
  • Sharma, A. ; Singh, B. P. ; Dhar, S. ; Gondorf, A. ; Spasova, M. Effect of Surface Groups on the Luminescence Property of ZnO Nanoparticles Synthesized by Sol–Gel Route. Surf. Sci. 2012, 606 , L13–L17. DOI: 10.1016/j.susc.2011.09.006.
  • Kose, A. ; Oncel, S. S. Properties of Microalgal Enzymatic Protein Hydrolysates: Biochemical Composition, Protein Distribution and FTIR Characteristics. Biotechnol Rep. 2015, 6 , 137–143. DOI: 10.1016/j.btre.2015.02.005.
  • Sundaramoorthi, K. ; Sethu, G. ; Ethirajulu, S. ; Raja Marthandam, P. Efficacy of Metformin in Human Single Hair Fibre by ATR-FTIR Spectroscopy Coupled with Statistical Analysis. J. Pharm. Biomed. Anal. 2017, 136 , 10–13. DOI: 10.1016/j.jpba.2016.11.057.
  • Warren, F. J. ; Gidley, M. J. ; Flanagan, B. M. Infrared Spectroscopy as a Tool to Characterise Starch Ordered Structure–A Joint FTIR-ATR, NMR, XRD and DSC Study. Carbohydr. Polym. 2016, 139 , 35–42. DOI: 10.1016/j.carbpol.2015.11.066.
  • Huang, G. ; Ng, T. W. ; An, T. ; Li, G. ; Wang, B. ; Wu, D. ; Yip, H. Y. ; Zhao, H. ; Wong, P. K. Interaction between Bacterial Cell Membranes and Nano-TiO2 Revealed by Two-Dimensional FTIR Correlation Spectroscopy Using Bacterial Ghost as a Model Cell Envelope. Water Res. 2017, 118 , 104–113. DOI: 10.1016/j.watres.2017.04.023.
  • Zhang, J. ; Wei, X. ; Huang, J. ; Lin, H. ; Deng, K. ; Li, Z. ; Shao, Y. ; Zou, D. ; Chen, Y. ; Huang, P. ; et al. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectral Prediction of Postmortem Interval from Vitreous Humor Samples. Anal. Bioanal. Chem. 2018, 410 , 7611–7620. DOI: 10.1007/s00216-018-1367-1.
  • Gao, Y. ; Liang, X. ; Bao, W. ; Li, S. ; Wu, C. Failure Analysis of a Field Brittle Fracture Composite Insulator: Characterization by FTIR Analysis and Fractography. IEEE Trans. Dielect. Electr. Insul. 2018, 25 , 919–927. DOI: 10.1109/TDEI.2018.006928.
  • Lyu, W. ; Shi, Y. ; Zheng, Y. ; Liu, Xe. XPS and FTIR Studies of Fungus-Stained Daemonorops Margaritae. J. Forestry Res. 2019, 30 , 739–743. DOI: 10.1007/s11676-018-0598-5.
  • Lv, D. ; Liu, Y. ; Zhou, J. ; Yang, K. ; Lou, Z. ; Baig, S. A. ; Xu, X. Application of EDTA-Functionalized Bamboo Activated Carbon (BAC) for Pb(II) and Cu(II) Removal from Aqueous Solutions. Appl. Surf. Sci. 2018, 428 , 648–658. DOI: 10.1016/j.apsusc.2017.09.151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.