268
Views
13
CrossRef citations to date
0
Altmetric
Articles

Investigation on the flotation recovery and kinetics of coking coal using the mixture of oleic acid and kerosene as a novel collector

, , , , &
Pages 75-81 | Received 01 Jul 2019, Accepted 20 Aug 2019, Published online: 09 Sep 2019

References

  • Xu, Z. ; Liu, J. ; Choung, J. W. ; Zhou, Z. Electrokinetic Study of Clay Interactions with Coal in Flotation. Int. J. Mineral Process. 2003, 68 , 183–196. DOI: 10.1016/S0301-7516(02)00043-1.
  • Ateşok, G. ; Çelik, M. S. A New Flotation Scheme for a Difficult-to-Float Coal Using Pitch Additive in Dry Grinding. Fuel 2000, 79 , 1509–1513. DOI: 10.1016/S0016-2361(00)00012-0.
  • Cheng, G. ; Liu, J. T. ; Gui, X. H. ; Hu, Z. B. ; Wang, Y. T. Effect of Different Grinding Conditions on the Dissociation and Flotation of Difficult-to-Float Coal. Energy Sources 2016, 38 , 7.
  • Ren, R. C. ; Cheng, M.; Zhang, G. W.; Li, C. X. Study on Small Taper Angle Hydrocyclone for Pre-Desliming Flotation Process of a Difficult-to-Float Coal Slime. J. China Coal Soc. 2014, 39 , 543–548.
  • Wang, J. Z.; Zhang, X. B.; Qin, H. B.; Tan, L. Experimental Research of Roughing and Cleaning Column Flotation of Difficult-to-float High Ash Coal. Advanced Materials Research. Trans Tech Publications, 2014; Vol. 1010 , pp 1603–1608.
  • Bu, X. ; Zhang, T.; Chen, Y.; Xie, G.; Peng, Y. Comparative Study of Conventional Cell and Cyclonic Microbubble Flotation Column for Upgrading a Difficult-to-Float Chinese Coking Coal Using Statistical Evaluation. Int. J. Coal Prepar. Util. 2017, 1–17. DOI: 10.1080/19392699.2017.1359577.
  • Wen, B. ; Xia, W. ; Sokolovic, J. M. Recent Advances in Effective Collectors for Enhancing the Flotation of Low Rank/Oxidized Coals. Powder Technol. 2017, 319 , 1–11. DOI: 10.1016/j.powtec.2017.06.030.
  • Sha, J. ; Lei, H.; Wang, M.; Liu, B.; Shao, H. Comparison of Separation Performance of Liquid-Solid Fluidized Bed Separator and Dense Medium Cyclone for Cleaning Coal. Int. J. Coal Prepar. Util.  2018, 38 (2), 98–106.
  • Yin, W. ; Zhu, Z.; Yang, B.; Fu, Y.; Yao, J. Contribution of Particle Shape and Surface Roughness on the Flotation Behavior of Low-Ash Coking Coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019, 41 (5), 636–644. DOI: 10.1080/15567036.2018.1520346.
  • Zhu, Z. ; Yin, W.; Li, Z.; Zhang, C.; Wang, D.; Yang, B. Investigation on the Liberation and Flotation Behaviors of Coking Middlings. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 1–7. DOI: 10.1080/15567036.2019.1587098.
  • Fuerstenau, D. W. ; Rosenbaum, J. M. ; Laskowski, J. Effect of Surface Functional Groups on the Flotation of Coal. Colloids & Surf. 1983, 8 , 153–173. DOI: 10.1016/0166-6622(83)80082-1.
  • Xia, W. ; Zhou, C. ; Peng, Y. Enhancing Flotation Cleaning of Intruded Coal Dry-Ground with Heavy Oil. J. Cleaner Produc. 2017, 161 , 591–597. DOI: 10.1016/j.jclepro.2017.05.193.
  • Liu, J. ; Mak, T. ; Zhou, Z. ; Xu, Z. Fundamental Study of Reactive Oily-Bubble Flotation. Minerals Eng. 2002, 15 , 667–676. DOI: 10.1016/S0892-6875(02)00158-9.
  • Dey, S. Enhancement in Hydrophobicity of Low Rank Coal by Surfactants — a Critical Overview. Fuel Process. Technol. 2012, 94 , 151–158. DOI: 10.1016/j.fuproc.2011.10.021.
  • Polat, M. ; Polat, H. ; Chander, S. Physical and Chemical Interactions in Coal Flotation. Int. J. Mineral Process. 2003, 72 , 199–213. DOI: 10.1016/S0301-7516(03)00099-1.
  • Helbig, C. ; Baldauf, H. ; Mahnke, J. ; Stöckelhuber, K. W. ; Schulze, H. J. Investigation of Langmuir Monofilms and Flotation Experiments with Anionic/Cationic Collector Mixtures. Int. J. Mineral Process. 1998, 53 , 135–144. DOI: 10.1016/S0301-7516(97)00077-X.
  • Jia, R. ; Harris, G. H. ; Fuerstenau, D. W. Chemical Reagents for Enhanced Coal Flotation. Coal Prep. 2002, 22 , 123–149. DOI: 10.1080/07349340213847.
  • Hunter, T. N. ; Pugh, R. J.; Franks, G. V.; Jameson, G. J. The Role of Particles in Stabilising Foams and Emulsions. Adv. Colloid Interf. Sci. 2008, 137 , 57–81. DOI: 10.1016/j.cis.2007.07.007.
  • Xia, W. ; Li, Y. ; Nguyen, A. V. Improving Coal Flotation Using the Mixture of Candle Soot and Hydrocarbon Oil as a Novel Flotation Collector. J. Cleaner Production 2018, 195 , 1183. DOI: 10.1016/j.jclepro.2018.06.020.
  • Gui, X. ; Xing, Y. ; Wang, T. ; Cao, Y. ; Miao, Z. ; Xu, M. Intensification Mechanism of Oxidized Coal Flotation by Using Oxygen-Containing Collector α-Furanacrylic Acid. Powder Technol. 2017, 305 , 109–116. DOI: 10.1016/j.powtec.2016.09.058.
  • Chander, S. ; Polat, H. ; Mohal, B. Flotation and Wettability of a Low-Rank Coal in the Presence of Surfactants. Minerals Metallurg. Process. 1994, 11 , 55–55. DOI: 10.1007/BF03403042.
  • Xia, W. ; Ni, C. ; Xie, G. Effective Flotation of Lignite Using a Mixture of Dodecane and 4-Dodecylphenol (DDP) as a Collector. Int. J. Coal Prep. Util. 2016, 36 , 262–271. DOI: 10.1080/19392699.2015.1113956.
  • Jaiswal, S. ; Tripathy, S. K. ; Banerjee, P. An Overview of Reverse Flotation Process for Coal. Int. J. Mineral Process. 2015, 134 , 97–110. DOI: 10.1016/j.minpro.2014.11.007.
  • Shen, L. ; Liu, L. ; Zhu, J. ; Qiao, E. Effect of Oleic Acid on Froth Properties and Reverse Flotation Performance of Thermal Coal. Trans. Indian Inst. Met. 2018, 71 , 1841–1846. DOI: 10.1007/s12666-018-1342-8.
  • Shen, L. ; Wang, H-f. ; Guo, B-l. ; Wang, H. The Application of Fatty Acids Emulsions in Thermal Coal Reverse Flotation. Int. J. Coal Prep. Util. 2016, 36 , 163–173. DOI: 10.1080/19392699.2015.1069279.
  • Xu, M. ; Xing, Y. ; Cao, Y. ; Gui, X. Effect of Dodecane and Oleic Acid on the Attachment between Oxidized Coal and Bubbles. Minerals 2018, 8 , 29. DOI: 10.3390/min8020029.
  • Liu, A. ; Fan, M-q. ; Li, Z-h. ; Fan, J-c. Non-Polar Oil Assisted DDA Flotation of Quartz I: Interfacial Interaction between Dodecane Oil Drop and Mineral Particle. Int. J. Mineral Process. 2017, 168 , 1–8. DOI: 10.1016/j.minpro.2017.09.004.
  • Zhang, H. ; Liu, J. ; Cao, Y. ; Wang, Y. Effects of Particle Size on Lignite Reverse Flotation Kinetics in the Presence of Sodium Chloride. Powder Technol. 2013, 246 , 658–663. DOI: 10.1016/j.powtec.2013.06.033.
  • Yuan, X.-M. ; Palsson, B. ; Forssberg, K. Statistical Interpretation of Flotation Kinetics for a Complex Sulphide Ore. Miner. Eng. 1996, 9 , 429–442. DOI: 10.1016/0892-6875(96)00028-3.
  • Agar, G. ; Chia, J. ; Requis-C, L. Flotation Rate Measurements to Optimize an Operating Circuit . Miner. Eng. 1998, 11 , 347–360. DOI: 10.1016/S0892-6875(98)00013-2.
  • Jameson, G. ; Nam, S. ; Young, M. M. Physical Factors Affecting Recovery Rates in Flotation. Miner. Sci. Eng. 1977, 9 , 103–118.
  • Niemi, A. J. Role of Kinetics in Modelling and Control of Flotation Plants. Powder Technol. 1995, 82 , 69–77. DOI: 10.1016/0032-5910(94)02893-S.
  • Oliveira, J. F. ; Saraiva, S. M. ; Pimenta, J. S. ; Oliveira, A. P. A. Kinetics of Pyrochlore Flotation from Araxa Mineral Deposits. Miner. Eng. 2001, 14 , 99–105. DOI: 10.1016/S0892-6875(00)00163-1.
  • Uçurum, M. Influences of Jameson Flotation Operation Variables on the Kinetics and Recovery of Unburned Carbon. Powder Technol. 2009, 191 , 240–246. DOI: 10.1016/j.powtec.2008.10.014.
  • Zuniga, H. G. Flotation Recovery Is an Exponential Function of Its Rate. Boletin de Minero, Sociedad Nacional de Mineria, Santiago, Chile 1935, 47 , 83–86.
  • Cilek, E. Estimation of Flotation Kinetic Parameters by considering Interactions of the Operating Variables. Miner. Eng. 2004, 17 , 81–85. DOI: 10.1016/j.mineng.2003.10.008.
  • Trahar, W. A Rational Interpretation of the Role of Particle Size in Flotation. Int. J. Mineral Process. 1981, 8 , 289–327. DOI: 10.1016/0301-7516(81)90019-3.
  • Ma, G. ; Xia, W. ; Xie, G. Effect of Particle Shape on the Flotation Kinetics of Fine Coking Coal. J. Cleaner Produc. 2018, 195 , 470. DOI: 10.1016/j.jclepro.2018.05.230.
  • Sutherland, K. Physical Chemistry of Flotation; Kinetics of the Flotation Process. J. Phys. Colloid Chem. 1948, 52 , 394–425. DOI: 10.1021/j150458a013.
  • Dowling, E. ; Klimpel, R. ; Aplan, F. Model Discrimination in the Flotation of a Porphyry Copper Ore. Mining, Metallur. Explor. 1985, 2 , 87–101. DOI: 10.1007/BF03402602.
  • Chaves, A. P. ; Ruiz, A. Considerations on the Kinetics of Froth Flotation of Ultrafine Coal Contained in Tailings. Int. J. Coal Prepar. Utilization 2009, 29 , 289–297. DOI: 10.1080/19392690903558371.
  • Castro, D. ; H.B, F. ; De Hoces, M. C. Flotation Rate of Celestite and Calcite. Chem. Eng. Sci. 1996, 51 , 119–125. DOI: 10.1016/0009-2509(95)00235-9.
  • Yin, W-z. ; Yang, X-s. ; Zhou, D-p. ; Li, Y-j. ; Lü, Z-f. Shear Hydrophobic Flocculation and Flotation of Ultrafine Anshan Hematite Using Sodium Oleate. Transact. Nonferr. Metals Soc. China 2011, 21 , 652–664. DOI: 10.1016/S1003-6326(11)60762-0.
  • Liao, Y. ; Cao, Y.; Liu, C.; Zhao, Y.; Zhu, G. Comparison of the Effect of Particle Size on the Flotation Kinetics of a Low-Rank Coal Using Air Bubbles and Oily Bubbles. J. South. Afr. Inst. Min. Metall. 2017, 117 (6), 561–566. DOI: 10.17159/2411-9717/2017/v117n6a6.
  • Xia, W. ; Peng, Y.; Ren, C.; Xie, G.; Liang, C. Changes in the Flotation Kinetic of Bituminous Coal before and after Natural Weathering Processes. Physicochem. Problems Miner. Process . 2015, 51 , 401–410.
  • Xia, W. ; Xie, G. ; Liang, C. ; Yang, J. Flotation Behavior of Different Size Fractions of Fresh and Oxidized Coals. Powder Technol. 2014, 267 , 80–85. DOI: 10.1016/j.powtec.2014.07.017.
  • Zhu, Z. ; Yin, W. ; Yang, B. ; Fu, Y. ; Xue, J. Reduction of the Slime Contamination on Fine Coking Coal by Using the Reverse-and-Direct Flotation Process. Colloids Surf. A: Physicochem. Eng. Aspects 2019, 579 , 123681. DOI: 10.1016/j.colsurfa.2019.123681.
  • Yin, W. ; Yang, B.; Fu, Y.; Chu, F.; Yao, J.; Cao, S.; Zhu, Z. Effect of Calcium Hypochlorite on Flotation Separation of Covellite and Pyrite. Powder Technol.  2019, 343, 578–585. DOI: 10.1016/j.powtec.2018.11.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.