376
Views
3
CrossRef citations to date
0
Altmetric
Articles

A mesoscopic DPD simulation study on long chain quaternary ammonium gemini surfactant solution

, , , , , , , , & show all
Pages 58-66 | Received 30 Mar 2019, Accepted 18 Aug 2019, Published online: 05 Sep 2019

References

  • Menger, F. M. ; Keiper, J. S. Gemini Surfactants. Angew. Chem. Int. Ed. Engl. 2000, 39 , 1906–1920. DOI: 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-Q.
  • Pisárčik, M. ; Jampílek, J. ; Devínsky, F. ; Drábiková, J. ; Tkacz, J. ; Opravil, T. Gemini Surfactants with Polymethylene Spacer: Supramolecular Structures at Solid Surface and Aggregation in Aqueous Solution. J. Surfactants Deterg. 2016, 19 , 1–10.
  • Singh, S. ; Bhadoria, A. ; Parikh, A. ; Yadav, S. K. ; Kumar, S. ; Aswal, V. K. ; Kumar, S. Self-Assembly in Aqueous Oppositely Charged Gemini Surfactants: A Correlation between Morphology and Solubilization Efficacy. J. Phys. Chem. B. 2017, 121 , 8756–8766. DOI: 10.1021/acs.jpcb.7b03989.
  • El-Said, W. A. ; Moharram, A. S. ; Hussein, E. M. ; El-Khawaga, A. M. Design, Synthesis, Anticorrosion Efficiency, and Applications of Novel Gemini Surfactants for Preparation of Small-Sized Hollow Spheres Mesoporous Silica Nanoparticles. Mater. Chem. Phys. 2018, 211 , 123. DOI: 10.1016/j.matchemphys.2018.02.013.
  • Shakil, S. M. ; Kamal, M. S. ; Sultan, A. S. Amido‐Amine‐Based Cationic Gemini Surfactants: Thermal and Interfacial Properties and Interactions with Cationic Polyacrylamide. J. Surfactants Deterg. 2017, 20 , 1–9.
  • Li, G.-F. ; Ren, T.-C. ; Wang, Y. ; Wu, Y.-S. ; Wei, Q.-S. ; Xu, J.-F. Mechanism of Viscosity Increased by Ammonium Gemini Surfactant Self-Assembly. J. China Univ. Petrol. (Ed. Nat. Sc.) 2016, 40 , 163–169.
  • Borner, A. ; Panerai, F. ; Mansour, N. N. High Temperature Permeability of Fibrous Materials Using Direct Simulation Monte Carlo. Int. J. Heat Mass Transf. 2017, 106 , 1318–1326. DOI: 10.1016/j.ijheatmasstransfer.2016.10.113.
  • Zhen, L. L. ; Liu, K. H. ; Huang, D. ; Ren, X. H. ; Li, R. Structure–Property Relationship of Sulfosuccinic Acid Diester Sodium Salt Micelles: 3D-QSAR Model and DPD Simulation. J. Disper. Sci. Technol. 2016, 37 , 941–948. DOI: 10.1080/01932691.2015.1073601.
  • Ma, Y. ; Wang, Y. X. ; Deng, X. J. ; Zhou, G. G. ; Khalid, S. ; Sun, X. L. ; Sun, W. ; Zhou, Q. ; Lu, G. W. Correction: Dissipative Particle Dynamics and Molecular Dynamics Simulations on Mesoscale Structure and Proton Conduction in a SPEEK/PVDF-g-PSSA Membrane. RSC Adv. 2017, 7 , 39676–39684. DOI: 10.1039/C7RA07301A.
  • Zhang, P. ; Li, Y. Z. ; Wu, F. ; Yang, F. ; Chen, Z. C. Effects of PP-g-MAH on PS/PP Blends by DPD Simulation. Plastics Sci. Technol. 2017, 45 , 36–41.
  • Shelley, J. C. ; Watanabe, K. ; Klein, M. L. Simulation of a Sodium Dodecylsulfate Micelle in Aqueous Solution. Int. J. Quantum Chem. 1990, 38 , 103–117. DOI: 10.1002/qua.560381713.
  • Hoogerbrugge, P. J. ; Koelman, V. A. Simulating Microscopic Hydrodynamics Phenomena with Dissipative Particle Dynamics. Europhys. Lett. 1992, 19 , 155. DOI: 10.1209/0295-5075/19/3/001.
  • Du, S.-L. ; Wang, J.-Y. ; He, S. ; Zhu, J.-P. ; Ren, J. ; Hu, Z.-Y. ; Cao, D.-L. Simulation on Aggregation Morphology of Gemini Surfactants for Emulsion Explosive in Aqueous Solution. Chin. J. Energetic Mater. 2011, 19 , 28–32.
  • Minh, V. ; Dimitrios, V. In Adsorption of SDS Surfactant inside and around Carbon Nanotubes with DPD Simulation. APS Meeting 2016, 61 , 10–11.
  • Wang, P. ; Pei, S. ; Wang, M. ; Yan, Y. ; Sun, X. ; Zhang, J. Coarse-Grained Molecular Dynamics Study on the Self-Assembly of Gemini Surfactants: The Effect of Spacer Length. Phys. Chem. Chem. Phys. 2017, 19 , 4462–4468. DOI: 10.1039/C6CP07690D.
  • Rezaei, H. ; Modarress, H. Dissipative Particle Dynamics (DPD) Study of Hydrocarbon–Water Interfacial Tension (IFT). Chem. Phys. Lett. 2015, 620 , 114–122. DOI: 10.1016/j.cplett.2014.12.033.
  • Rezaei, H. ; Amjad-Iranagh, S. ; Modarress, H. Self-Accumulation of Uncharged Polyaromatic Surfactants at Crude Oil–Water Interface: A Mesoscopic DPD Study. Energy Fuels 2016, 30 , 6626–6639. DOI: 10.1021/acs.energyfuels.6b00254.
  • Rezaei, H. ; Modarress, H. Dissipative Particle Dynamics Study of Interfacial Properties and the Effects of Nonionic Surfactants on Hydrocarbon/Water Microemulsions. J. Disper. Sci. Technol. 2016, 37 , 969–979. DOI: 10.1080/01932691.2015.1077453.
  • Yang, C. P. ; Hu, Z. Y. ; Song, Z. Z. ; Bai, J. Y. ; Zhang, Y. ; Luo, J. Q. ; Du, Y. X. ; Jiang, Q. Z. Self‐Assembly Properties of Ultra‐Long‐Chain Gemini Surfactant with High Performance in a Fracturing Fluid Application. J. Appl. Polym. Sci. 2017, 134 , 62–70. DOI: 10.1002/app.44602.
  • Groot, R. D. ; Warren, P.-B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107 , 4423–4435. DOI: 10.1063/1.474784.
  • Español, P. ; Warren, P. Statistical Mechanics of Dissipative Particle Dynamics. EPL . 1995, 30 , 191. DOI: 10.1209/0295-5075/30/4/001.
  • Nojabaei, B. ; Johns, R. T. ; Chu, L. Effect of Capillary Pressure on Phase Behavior in Tight Rocks and Shales. SPE Reserv. Eval. Eng. 2013, 16 , 281–289. DOI: 10.2118/159258-PA.
  • Mai, Z. H. ; Couallier, E. ; Rakib, M. ; Rousseau, B. Parameterization of a Mesoscopic Model for the Self-Assembly of Linear Sodium Alkyl Sulfates. J. Chem. Phys. 2014, 140 , 2967–2969.
  • Guo, H.-Y. ; Qiu, X.-Q. ; Zhou, J. Self-Assembled Core-Shell and Janus Microphase Separated Structures of Polymer Blends in Aqueous Solution. J. Chem. Phys. 2013, 139 , 423.
  • Chang, H.-Y. ; Lin, Y.-L. ; Sheng, Y.-J. ; Tsao, H.-K. Multilayered Polymersome Formed by Amphiphilic Asymmetric Macromolecular Brushes. Macromolecules 2012, 45 , 4778–4789. DOI: 10.1021/ma3007366.
  • Li, M. ; Zhang, H.-X. ; Bao, M. ; Chen, Q.-G. Aggregation Behavior of Surfactants with Different Molecular Structures in Aqueous Solution: DPD Simulation Study. J. Disper. Sci. Technol. 2012, 33 , 1437–1443. DOI: 10.1080/01932691.2011.620897.
  • Deng, X. J. ; Yang, Y. ; Ma, Y. ; Sun, X. L. ; Zhou, G. G. ; Wu, H. C. ; Lu, G. W. Self-Assembled Structure of Sulfonic Gemini Surfactant Solution. AIP Adv. 2018, 8 , 075003. DOI: 10.1063/1.5040684.
  • Irving, J. H. ; Kirkwood, J. G. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. J. Chem. Phys. 1950, 18 , 817–829. DOI: 10.1063/1.1747782.
  • Rekvig, L. ; Kranenburg, M. ; Vreede, J. ; Hafskjold, B. ; Smit, B. Investigation of Surfactant Efficiency Using Dissipative Particle Dynamics. Langmuir 2003, 19 , 8195–8205. DOI: 10.1021/la0346346.
  • Maiti, A. ; Mcgrother, S. Bead-Bead Interaction Parameters in Dissipative Particle Dynamics: Relation to Bead-Size, Solubility Parameter, and Surface Tension. J. Chem. Phys. 2004, 120 , 1594–1601. DOI: 10.1063/1.1630294.
  • Yang, C. P. ; Song, Z. Z. ; Zhao, J. J. ; Hu, Z. Y. ; Zhang, Y. ; Jiang, Q. Z. Self-Assembly Properties of Ultra-Long-Chain Gemini Surfactants Bearing Multiple Amide Groups with High Performance in Fracturing Fluid Application. Colloid Surf. A: Physicochem. Eng. Asp. 2017, 523 , 62–70. DOI: 10.1016/j.colsurfa.2017.03.062.
  • Zeppieri, S. ; Rodriguez, J. ; Lopez de Ramos, A. L. Interfacial Tension of Alkane + Water Systems. J. Chem. Eng. Data 2001, 46 , 1086–1088. DOI: 10.1021/je000245r.
  • Liao, Z.-Y. ; Fang, C. ; Huang, C. M. ; Yang, X. L.; Ma, J. Critical Micelle Concentration (CMC) of Bayberry Tannin Measured by pH Method and Influencing Factors of CMC. J. Xihua Univ. (Nat. Sci.) 2014, 33 , 77–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.