267
Views
7
CrossRef citations to date
0
Altmetric
Articles

Evaluation of models for predicting relative viscosity of ultrasound-assisted synthetic water-in-oil emulsions of Brazilian crude oil

, , , , &
Pages 119-131 | Received 12 Jun 2019, Accepted 31 Aug 2019, Published online: 12 Sep 2019

References

  • Wong, S. F. ; Dol, S. S. ; Wee, S. K. ; Chua, H. B. Miri Light Crude Water-in-Oil Emulsions Characterization – Rheological Behaviour, Stability and Amount of Emulsions Formed. J. Pet. Sci. Eng . 2018, 165 , 58–66. DOI: 10.1016/j.petrol.2018.02.013.
  • Langevin, D. ; Poteau, S. ; Hénaut, I. ; Argillier, J. F. Crude Oil Emulsion Properties and Their Application to Heavy Oil Transportation. Oil Gas Sci. Technol. - Rev. IFP. 2004, 59 , 511–521. DOI: 10.2516/ogst:2004036.
  • Pal, R. Techniques for Measuring the Composition (Oil and Water Content) of Emulsions — a State of the Art Review. Colloids Surf., A 1994, 84 , 141–193. DOI: 10.1016/0927-7757(93)02711-M.
  • Zolfaghari, R. ; Fakhru’l-Razi, A. ; Abdullah, L. C. ; Elnashaie, S. S. ; Pendashteh, A. Demulsification Techniques of Water-in-Oil and Oil-in-Water Emulsions in Petroleum Industry. Sep. Purif. Technol. 2016, 170 , 377–407. DOI: 10.1016/j.seppur.2016.06.026.
  • Goodarzi, F. ; Zendehboudi, S. A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. Can. J. Chem. Eng. 2019, 97 , 281–309. DOI: 10.1002/cjce.23336.
  • Spiecker, P. M. ; Kilpatrick, P. K. Interfacial Rheology of Petroleum Asphaltenes at the Oil–Water Interface. Langmuir 2004, 20 , 4022–4032. DOI: 10.1021/la0356351.
  • Pal, R. Evaluation of Theoretical Viscosity Models for Concentrated Emulsions at Low Capillary Numbers. Chem. Eng. J. 2001, 81 , 15–21. DOI: 10.1016/S1385-8947(00)00174-1.
  • Pajouhandeh, A. ; Kavousi, A. ; Schaffie, M. ; Ranjbar, M. Experimental Measurement and Modeling of Nanoparticle-Stabilized Emulsion Rheological Behavior. Colloids Surf., A 2017, 520 , 597–611. DOI: 10.1016/j.colsurfa.2017.02.002.
  • Sefton, E. ; Sinton, D. Evaluation of Selected Viscosity Prediction Models for Water in Bitumen Emulsions. J. Pet. Sci. Eng. 2010, 72 , 128–133. DOI: 10.1016/j.petrol.2010.03.010.
  • Al-Sabagh, A. M. ; Nasser, N. M. ; El-Hamid, T. M. A. Investigation of Kinetic and Rheological Properties for the Demulsification Process. Egypt. J. Pet. 2013, 22 , 117–127. DOI: 10.1016/j.ejpe.2012.11.013.
  • Ariffin, T. S. T. ; Yahya, E. ; Husin, H. The Rheology of Light Crude Oil and Water-in-Oil-Emulsion. Procedia Eng. 2016, 148 , 1149–1155. DOI: 10.1016/j.proeng.2016.06.614.
  • Alade, O. S. ; Ademodi, B. ; Sasaki, K. ; Sugai, Y. ; Kumasaka, J. ; Ogunlaja, A. S. Development of Models to Predict the Viscosity of a Compressed Nigerian Bitumen and Rheological Property of Its Emulsions. J. Pet. Sci. Eng. 2016, 145 , 711–722. DOI: 10.1016/j.petrol.2016.06.040.
  • Martínez-Palou, R. ; de Lourdes Mosqueira, M. ; Zapata-Rendón, B. ; Mar-Juárez, E. ; Bernal-Huicochea, C. ; de la Cruz Clavel-López, J. ; Aburto, J. Transportation of Heavy and Extra-Heavy Crude Oil by Pipeline: A Review. J. Pet. Sci. Eng. 2011, 75 , 274–282. DOI: 10.1016/j.petrol.2010.11.020.
  • De Oliveira, C. B. Z. ; Souza, W. J. ; Santana, C. F. ; Santana, C. C. ; Dariva, C. ; Franceschi, E. ; Guarnieri, R. A. ; Fortuny, M. ; Santos, A. F. Rheological Properties of Water-in-Brazilian Crude Oil Emulsions: Effect of Water Content, Salinity, and pH. Energy Fuels 2018, 32 , 8880–8890. DOI: 10.1021/acs.energyfuels.8b01227.
  • Pal, R. A Novel Method to Correlate Emulsion Viscosity Data. Colloids Surfaces, A 1998, 137 , 275–286. DOI: 10.1016/S0927-7757(97)00374-9.
  • Pal, R. Rheology of Simple and Multiple Emulsions. Curr. Opin. Colloid Interface Sci. 2011, 16 , 1641–1660. DOI: 10.1016/j.cocis.2010.10.001.
  • Johnsen, E. E. ; Rønningsen, H. P. Viscosity of “Live” Water-in-Crude-Oil Emulsions: Experimental Work and Validation of Correlations. J. Pet. Sci. Eng. 2003, 38 , 23–36. DOI: 10.1016/S0920-4105(03)00020-2.
  • Kundu, P. ; Kumar, V. ; Mishra, I. M. Modeling the Steady-Shear Rheological Behavior of Dilute to Highly Concentrated Oil-in-Water (O/W) Emulsions: Effect of Temperature, Oil Volume Fraction and Anionic Surfactant Concentration. J. Pet. Sci. Eng. 2015, 129 , 189–204. DOI: 10.1016/j.petrol.2015.03.008.
  • Shi, S. ; Wang, Y. ; Liu, Y. ; Wang, L. A New Method for Calculating the Viscosity of W/O and O/W Emulsion. J. Pet. Sci. Eng. 2018, 171 , 928–937. DOI: 10.1016/j.petrol.2018.08.015.
  • Farah, M. A. ; Oliveira, R. C. ; Caldas, J. N. ; Rajagopal, K. Viscosity of Water-in-Oil Emulsions: Variation with Temperature and Water Volume Fraction. J. Pet. Sci. Eng. 2005, 48 , 169–184. DOI: 10.1016/j.petrol.2005.06.014.
  • Einstein, A. Eine Neue Bestimmung Der Moleküldimensionen [AdP 19, 289 (1906)]. Ann. Phys. 2005, 14 , 229–247. DOI: 10.1002/andp.200590008.
  • Vand, V. Theory of Viscosity of Concentrated Suspensions. Nature 1945, 155 , 364–365. DOI: 10.1038/155364b0.
  • Monson, L. T. Viscosity of Petroleum Emulsions. Ind. Eng. Chem. 1938, 30 , 1287–1291. DOI: 10.1021/ie50347a020.
  • Guth, E. ; Simha, R. The Viscosity of Suspensions and Solutions. III. Viscosity Sphere Suspensions. Kolloid-Z 1936, 74 , 266–275. DOI: 10.1007/BF01428643.
  • Ronningsen, H. P. Correlations for Predicting Viscosity of W/O-Emulsions Based on North Sea Crude Oils. Presented at the SPE International Symposium on Oilfield Chemistry, San Antonio, TX, Feb 14–17, 1995. DOI: 10.2118/28968-MS.
  • Hossain, M. S. ; Sarica, C. ; Zhang, H.-Q. ; Rhyne, L. ; Greenhill, K. L. Assessment and Development of Heavy Oil Viscosity Correlations. Presented at the SPE International Thermal Operations and Heavy Oil Symposium, Calgary, Alberta, Canada, Nov 1–3, 2005. DOI: 10.2118/97907-MS.
  • Brown, K. E. The Technology of Artificial Lift Methods ; PPC Books: Tulsa, OK, 1977.
  • ASTM D341-17. Standard Practice for Viscosity-Temperature Charts for Liquid Petroleum Products ; ASTM International: West Conshohocken, PA, 2017.
  • ASTM D5854-96(2015). Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products ; ASTM International: West Conshohocken, PA, 2015.
  • ASTM D5002-16. Standard Test Method for Density and Relative Density of Crude Oils by Digital Density Analyzer ; ASTM International: West Conshohocken, PA, 2016.
  • ASTM D1250-08(2013)e1. Standard Guide for Use of the Petroleum Measurement Tables ; ASTM International: West Conshohocken, PA, 2013.
  • ISO 12185:1996(en). Crude Petroleum and Petroleum Products — Determination of Density — Oscillating U-Tube Method. https://www.iso.org/obp/ui/#iso:std:iso:12185:ed-1:v1:en (accessed January 17, 2019).
  • ASTM D5853 - 17a. Standard Test Method for Pour Point of Crude Oils ; ASTM International: West Conshohocken, PA, 2017.
  • ASTM D664-18e2. Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration ; ASTM International: West Conshohocken, PA, 2018.
  • ASTM D7042-16e3. Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity) ; ASTM International: West Conshohocken, PA, 2016.
  • ASTM D4294-16e1. Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry ; ASTM International: West Conshohocken, PA, 2016.
  • ASTM D4007-11(2016)e1. Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure) ; ASTM International: West Conshohocken, PA, 2016.
  • ASTM D6470-99(2015). Standard Test Method for Salt in Crude Oils (Potentiometric Method) ; ASTM International: West Conshohocken, PA, 2015.
  • ASTM D2549-02(2017). Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography ; ASTM International: West Conshohocken, PA, 2017.
  • ASTM D4377-00(2011). Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration ; ASTM International: West Conshohocken, 2011.
  • Cucheval, A. ; Chow, R. C. Y. A Study on the Emulsification of Oil by Power Ultrasound. Ultrason. Sonochem. 2008, 15 , 916–920. DOI: 10.1016/j.ultsonch.2008.02.004.
  • Canselier, J. P. ; Delmas, H. ; Wilhelm, A. M. ; Abismaïl, B. Ultrasound Emulsification—an Overview. J. Dispers. Sci. Technol. 2002, 23 , 333–349. DOI: 10.1080/01932690208984209.
  • Sivakumar, M. ; Tang, S. Y. ; Tan, K. W. Cavitation Technology – a Greener Processing Technique for the Generation of Pharmaceutical Nanoemulsions. Ultrason. Sonochem. 2014, 21 , 2069–2083. DOI: 10.1016/j.ultsonch.2014.03.025.
  • Patil, L. ; Gogate, P. R. Ultrasound Assisted Synthesis of Stable Oil in Milk Emulsion: Study of Operating Parameters and Scale-Up Aspects. Ultrason. Sonochem. 2018, 40 , 135–146. DOI: 10.1016/j.ultsonch.2017.07.001.
  • Delgado-Povedano, M. M. ; de Castro, M. M. L. Ultrasound-Assisted Analytical Emulsification-Extraction. TrAC, Trends Anal. Chem. 2013, 45 , 1–13. DOI: 10.1016/j.trac.2012.12.011.
  • Tal-Figiel, B. The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field. Chem. Eng. Res. Des. 2007, 85 , 730–734. DOI: 10.1205/cherd06199.
  • Gardner, E. A. ; Apfel, R. E. Using Acoustics to Study and Stimulate the Coalescence of Oil Drops Surrounded by Water. J. Colloid Interface Sci. 1993, 159 , 226–237. DOI: 10.1006/jcis.1993.1316.
  • Kentish, S. ; Wooster, T. J. ; Ashokkumar, M. ; Balachandran, S. ; Mawson, R. ; Simons, L. The Use of Ultrasonics for Nanoemulsion Preparation. Innovative Food Sci. Emerging Technol. 2008, 9 , 170–175. DOI: 10.1016/j.ifset.2007.07.005.
  • O’Sullivan, J. ; Murray, B. ; Flynn, C. ; Norton, I. Comparison of Batch and Continuous Ultrasonic Emulsification Processes. J. Food Eng. 2015, 167 , 114–121. DOI: 10.1016/j.jfoodeng.2015.05.001.
  • Sancheti, S. V. ; Gogate, P. R. A Review of Engineering Aspects of Intensification of Chemical Synthesis Using Ultrasound. Ultrason. Sonochem. 2017, 36 , 527–543. DOI: 10.1016/j.ultsonch.2016.08.009.
  • Umar, A. A. ; Saaid, I. B. M. ; Sulaimon, A. A. ; Pilus, R. B. M. A Review of Petroleum Emulsions and Recent Progress on Water-In-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Pet. Sci. Eng. 2018, 165 , 673–690. DOI: 10.1016/j.petrol.2018.03.014.
  • Fingas, M. F. Water-in-Oil Emulsions: Formation and Prediction. J. Pet. Sci. Res. 2014, 3 , 38. DOI: 10.14355/jpsr.2014.0301.04.
  • Paniwnyk, L. Applications of Ultrasound in Processing of Liquid Foods: A Review. Ultrason. Sonochem. 2017, 38 , 794–806. DOI: 10.1016/j.ultsonch.2016.12.025.
  • Gaikwad, S. G. ; Pandit, A. B. Ultrasound Emulsification: Effect of Ultrasonic and Physicochemical Properties on Dispersed Phase Volume and Droplet Size. Ultrason. Sonochem. 2008, 15 , 554–563. DOI: 10.1016/j.ultsonch.2007.06.011.
  • Mason, T. J. ; Lorimer, J. P. ; Bates, D. M. Quantifying Sonochemistry: Casting Some Light on a ‘Black Art. Ultrasonics 1992, 30 , 40–42. DOI: 10.1016/0041-624X(92)90030-P.
  • Dan, D. ; Jing, G. Apparent Viscosity Prediction of Non-Newtonian Water-In-Crude Oil Emulsions. J. Pet. Sci. Eng. 2006, 53 , 113–122. DOI: 10.1016/j.petrol.2006.04.003.
  • Kokal, S. L. Crude Oil Emulsions: A State-of-the-Art Review. SPE Prod. Facil. 2005, 20 , 5–13. DOI: 10.2118/77497-PA.
  • Pal, R. Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids. J. Colloid Interface Sci. 2000, 225 , 359–366. DOI: 10.1006/jcis.2000.6776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.