184
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Multiwall carbon nanotube-nematic liquid crystal composite system: preparation and characterization

, &
Pages 707-714 | Received 28 Sep 2019, Accepted 17 Dec 2019, Published online: 07 Jan 2020

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Shiraishi, M.; Kroto, H. W. The Production and Structure of Pyrolytic Carbon Nanotubes (PCNTs). J. Phys. Chem. Sol. 1993, 54, 1841–1848. DOI: 10.1016/0022-3697(93)90297-5.
  • Colbert, D. T.; Zhang, J.; McClure, S. M.; Nikolaev, P.; Chen, Z.; Hafner, J. H.; Owens, D. W.; Kotula, P. G.; Carter, C. B.; Weaver, J. H.; et al. Growth and Sintering of Fullerene Nanotubes. Science 1994, 266, 1218–1222. DOI: 10.1126/science.266.5188.1218.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Pres: London, 2001.
  • Lynch, M. D.; Patrick, D. L. Organizing Carbon Nanotubes with Liquid Crystals. Nano Lett. 2002, 2, 1197–1201. DOI: 10.1021/nl025694j.
  • Van der Schoot, P.; Popa-Nita, V.; Kralj, S. Alignment of Carbon Nanotubes in Nematic Liquid Crystals. J. Phys. Chem. B. 2008, 112, 4512–4518. DOI: 10.1021/jp712173n.
  • Popa-Nita, V.; Kralj, S. Liquid Crystal-Carbon Nanotubes Mixtures. J. Chem. Phys. 2010, 132, 024902. DOI: 10.1063/1.3291078.
  • Russell, J. M.; Oh, S.; Larue, I.; Zhou, O.; Samulski, E. T. Alignment of Nematic Liquid Crystals Using Carbon Nanotube Films. Thin Sol. Films 2006, 509, 53–57. DOI: 10.1016/j.tsf.2005.09.099.
  • Dolgov, L.; Yaroshchuk, O.; Lebovka, M. Effect of Electro-Optical Memory in Liquid Crystals Doped with Carbon Nanotubes. Mol. Cryst. Liq. Cryst. 2008, 496, 212–229. DOI: 10.1080/15421400802451816.
  • Basu, R.; Iannacchione, G. S. Carbon Nanotube Dispersed Liquid Crystal: A Nano Electromechanical System. Appl. Phys. Lett. 2008, 93, 183105. DOI: 10.1063/1.3005590.
  • Dolgov, L. A.; Lebovka, N. I.; Yaroshchuk, O. V. Effect of Electrooptical Memory in Suspensions of Carbon Nanotubes in Liquid Crystals. Colloid J. 2009, 71, 603–611. DOI: 10.1134/S1061933X09050044.
  • Lee, W.; Gau, J. S.; Chen, H. Y. Electro-Optical Properties of Planar Nematic Cells Impregnated with Carbon Nanosolids. Appl. Phys. B. 2005, 81, 171–176. DOI: 10.1007/s00340-005-1914-2.
  • Chen, H. Y.; Lee, W. Suppression of Field Screening in Nematic Liquid Crystals by Carbon Nanotubes. Appl. Phys. Lett. 2006, 88, 222105. DOI: 10.1063/1.2208373.
  • Huang, C. Y.; Hu, C. Y.; Pan, H. C.; Lo, K. Y. Electrooptical Responses of Carbon Nanotube-Doped Liquid Crystal Devices. Jpn. J. Appl. Phys. 2005, 44, 8077–8081. DOI: 10.1143/JJAP.44.8077.
  • Huang, C. Y.; Pan, H. C.; Hsieh, C. T. Electrooptical Properties of Carbon-Nanotube Doped Twisted Nematic Liquid Crystal Cell. Jpn. J. Appl. Phys. 2006, 45, 6392–6394. DOI: 10.1143/JJAP.45.6392.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. DOI: 10.1021/cr050569o.
  • Jeon, S. Y.; Shin, S. H.; Jeong, S. J.; Lee, S. H.; Jeong, S. H.; Lee, Y. H.; Choi, H. C.; Kim, K. J. Effects of Carbon Nanotubes on Electro-Optical Characteristics of Liquid Crystal Cell Driven by in-Plane Field. Appl. Phys. Lett. 2007, 90, 121901. DOI: 10.1063/1.2714311.
  • Abbasov, M. E.; Carlisle, G. O. Effects of Carbon Nanotubes on Electro-Optical Properties of Dye-Doped Nematic Liquid Crystal. J. Mater. Sci: Mater. Electron. 2012, 23, 712–717. DOI: 10.1007/s10854-011-0477-8.
  • Ghosh, S.; Nayek, P.; Roy, S. K.; Gangopadhyay, R.; Molla, M. R.; Dabrowski, R. Effects of Conducting Polymer Poly (3, 4-Ethylenedioxythiophene) Nanotubes on the Electro-Optical and Dielectric Properties of a Nematic Liquid Crystal 4-n-Pentyl-4′-Cyanobiphenyl Host. Appl. Phys. Lett. 2010, 96, 073101. DOI: 10.1063/1.3308497.
  • Park, T. J.; Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Purification Strategies and Purity Visualization Techniques for Single-Walled Carbon Nanotubes. J. Mater. Chem 2006, 16, 141–154. DOI: 10.1039/B510858F.
  • Xie, X.; Mai, Y.; Zhou, X. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mater. Sci. Eng. R. 2005, 49, 89–112. DOI: 10.1016/j.mser.2005.04.002.
  • Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes. Angew. Chem. 2002, 114, 1933–1939.
  • Bahr, J. L.; Tour, J. M. Covalent Chemistry of Single-Wall Carbon Nanotubes. J. Mater. Chem. 2002, 12, 1952–1958. DOI: 10.1039/b201013p.
  • Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon Nanotubes-the Route toward Applications. Science 2002, 297, 787–792. DOI: 10.1126/science.1060928.
  • Ajayan, P. M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787–1799. DOI: 10.1021/cr970102g.
  • Jeon, S. Y.; Shin, S. H.; Lee, J. H.; Lee, S. H.; Lee, Y. H. Wavefront Correction and Customization of Focal Spot of 100 TW Ti:Sapphire Laser System. Jpn. J. Appl. Phys. 2007, 46, 7801–7802. DOI: 10.1143/JJAP.46.7724.
  • Meng, L.; Fu, C.; Lu, Q. Advanced Technology for Functionalization of Carbon Nanotubes. Prog. Nat. Sci. 2009, 19, 801–810. DOI: 10.1016/j.pnsc.2008.08.011.
  • Minenko, S. S.; Lisetski, L. N.; Goncharuk, A. I.; Lebovka, N. I.; Ponevchinsky, V. V.; Soskin, M. S. Aggregates of Multiwalled Carbon Nanotubes in Nematic Liquid Crystal Dispersions: experimental Evidence and a Physical Picture. Funct. Mater. 2010, 17, 454.
  • Lee, W.; Wang, C. Y.; Shih, Y. C. Effects of Carbon Nanosolids on the Electro-Optical Properties of a Twisted Nematic Liquid-Crystal Host. Appl. Phys. Lett. 2004, 85, 513–515. DOI: 10.1063/1.1771799.
  • Lee, W.; Shih, Y. C. Effects of Carbon‐Nanotube Doping on the Performance of a TN‐LCD. J. SID. 2005, 13, 9.
  • Chen, H. Y.; Lee, W.; Clark, N. A. Faster Electro-Optical Response Characteristics of a Carbon-Nanotube-Nematic Suspension. Appl. Phys. Lett. 2007, 90, 033510. DOI: 10.1063/1.2432294.
  • Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals. Adv. Mater. 2004, 16, 865–869. DOI: 10.1002/adma.200306196.
  • Lebovka, N.; Dadakova, T.; Lysetskiy, L.; Melezhyk, O.; Puchkovska, G.; Gavrilko, T.; Baran, J.; Drozd, M. Phase Transitions, Intermolecular Interactions and Electrical Conductivity Behavior in Carbon Multiwalled Nanotubes/Nematic Liquid Crystal Composites. J. Mol. Str. 2008, 887, 135–143. DOI: 10.1016/j.molstruc.2007.12.038.
  • Shehzad, K.; Hakro, A. A.; Zeng, Y.; Zeng, Y.; Yao, S.-H.; Xiao-Hong, Y.; Mumtaz, M.; Nadeem, K.; Khisro, N. S.; Dang, Z. M. Two Percolation Thresholds and Remarkably High Dielectric Permittivity in Pristine Carbon Nanotube/Elastomer Composites. Appl. Nanosci. 2015, 5, 969–974. DOI: 10.1007/s13204-015-0403-0.
  • Shehzad, K.; Ahmad, M. N.; Hussain, T.; Mumtaz, M.; Shah, A. T.; Mujahid, A.; Wang, C.; Ellingsen, J.; Dang, Z.-M. Influence of Carbon Nanotube Dimensions on the Percolation Characteristics of Carbon Nanotube/Polymer Composites. J. Appl. Phys. 2014, 116, 064908. DOI: 10.1063/1.4892156.
  • Peterson, M. S. E.; Georgiev, G.; Atherton, T. J.; Cebe, P. Dielectric Analysis of the Interaction of Nematic Liquid Crystals with Carbon Nanotubes. Liq. Cryl. 2018, 45, 450–458. DOI: 10.1080/02678292.2017.1346212.
  • Singh, B. P.; Pathak, G.; Roy, A.; Hegde, G.; Tripathi, P. K.; Srivastava, A.; Manohar, R. Investigation of Dielectric and Electro-Optical Properties of Nematic Liquid Crystal with the Suspension of Biowaste-Based Porous Carbon Nanoparticles. Liq. Cryst. 2019, 46, 1808–1820. DOI: 10.1080/02678292.2019.1606354.
  • Abdullah, L. A. Nonlinear Optical Properties of Liquid Crystal Doped with Different Concentrations of Carbon Nanotubes. AIP Conf. Proc. 2019, 2123, 020064. DOI: 10.1063/1.5116991.
  • Hui, L.; Wentong, Q.; Fan, P.; Yuntao, W.; Yanduo, Z.; Xiaolin, X. Electro-Optical Dynamic Behavior of a Nematic Liquid Crystal Lens with Added Multi-Walled Carbon Nanotubes. OSA Continuum 2019, 2, 805–913. DOI: 10.1364/OSAC.2.000805.
  • Yildiz, S.; Cetinkaya, M. C. The Influence of Multi-Walled Carbon Nanotube Doping on Liquid Crystalline Phase Transitions of a Smectogen Octylcyanobiphenyl: A High-Resolution Birefringence Study. Fluid Phase Equil. 2019, 495, 47–58. DOI: 10.1016/j.fluid.2019.05.016.
  • Jain, A. K.; Deshmukh, R. R. Electro-Optical and Dielectric Study of Multi-Walled Carbon Nanotube Doped Polymer Dispersed Liquid Crystal Films. Liq. Crysts 2018, 46, 1191–1202. DOI: 10.1080/02678292.2018.1545264.
  • Dixit, A. C.; Pandey, K.; Tripathi, P. K.; Khan, M. S. Dielectric Study of Carbon Nanotube Dispersed Thermotropic Liquid Crystal. Int. J. Nanotec. Appl. 2017, 11, 179–188.
  • Singh, D. P.; Yadav, S. P.; Tripathi, P. K.; Tripathi, P.; Manohar, R.; Sharma, P. K.; Pandey, A. C. Concentration Dependent Physical Parameters of Ferroelectric Liquid Crystal and ZnOS Nano Material Composite System. Soft Matter. 2013, 11, 305–314. DOI: 10.1080/1539445X.2012.654582.
  • Yang, R. H.; Jin, J. Y.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. Carbon Nanotube-Quenched Fluorescent Oligonucleotides: probes That Fluoresce upon Hybridization. J. Am. Chem. Soc. 2008, 130, 8351–8358. DOI: 10.1021/ja800604z.
  • Goutam, P. J.; Singh, D. K.; Iyer, P. K. Photoluminescence Quenching of Poly (3-Hexylthiophene) by Carbon Nanotubes. J. Phys. Chem. C. 2012, 116, 8196–8201. DOI: 10.1021/jp300115q.
  • Park, K. A.; Lee, S. M.; Lee, S. H.; Lee, Y. H. Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube. J. Phys. Chem. C. 2007, 111, 1620–1624. DOI: 10.1021/jp0659960.
  • Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil, L. E.; Jurchescu, O. D. Charge-Transfer Complexes: new Perspectives on an Old Class of Compounds. J. Mater. Chem. C. 2014, 2, 3065–3076. DOI: 10.1039/C3TC32062F.
  • Refat, M. S.; Elfalaky, A.; Elesh, E.; Naglah, A. M.; Al-Omar, M. A. Electrical Properties on Charge Transfer Complex of Norfloxacin Drug with Iodine Acceptor. Int. J. Electrochem. Sci. 2015, 10, 6433–6443.
  • Ng, T. W.; Lo, M. F.; Fung, M. K.; Zhang, W. J.; Lee, C. S. Charge-Transfer Complexes: Charge-Transfer Complexes and Their Role in Exciplex Emission and near-Infrared Photovoltaics. Adv. Mater. 2014, 26, 5226–5226. DOI: 10.1002/adma.201470210.
  • Jayalakshmi, V.; Prasad, S. K. Understanding the Observation of Large Electrical Conductivity in Liquid Crystal-Carbon Nanotube Composites. Appl. Phys. Lett. 2009, 94, 202106. DOI: 10.1063/1.3133352.
  • Prasad, S. K.; Kumar, M. V.; Yelamaggad, C. V. Dual Frequency Conductivity Switching in a Carbon Nanotube/Liquid Crystal Composite. Carbon 2013, 59, 512–517. DOI: 10.1016/j.carbon.2013.03.047.
  • Shehzad, K.; Hussain, T.; Shah, A. T.; Mujahid, A.; Ahmad, M. N.; Sagar, R. u R.; Anwar, T.; Nasir, S.; Ali, A. Effect of the Carbon Nanotube Size Dispersity on the Electrical Properties and Pressure Sensing of the Polymer Composites. J. Mater. Sci. 2016, 51, 11014–11020. DOI: 10.1007/s10853-016-0322-9.
  • Shehzad, K.; Dang, Z.-M.; Ahmad, M. N.; Sagar, R. U. R.; Butt, S.; Farooq, M. U.; Wang, T.-B. Effects of Carbon Nanotubes Aspect Ratio on the Qualitative and Quantitative Aspects of Frequency Response of Electrical Conductivity and Dielectric Permittivity in the Carbon Nanotube/Polymer Composites. Carbon 2013, 54, 105–112. DOI: 10.1016/j.carbon.2012.10.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.