488
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Facile preparation and characterization of NiO/Ni2O3-decorated nanoballs and mixed phase CdS nano rods (CdS&NiO/Ni2O3) for effective photocatalytic decomposition of Congo red under visible light irradiation

ORCID Icon
Pages 1408-1418 | Received 28 Feb 2020, Accepted 16 Aug 2020, Published online: 13 Sep 2020

References

  • Song, Z.; Chen, L.; Hu, J.; Richards, R. NiO(111) Nano Sheets as Efficient and Recyclable Adsorbents for Dye Pollutant Removal from Wastewater. Nanotechnology 2009, 20, 275707. DOI: 10.1088/0957-4484/20/27/275707.
  • Sauer, T.; Neto, G. C.; Jose, H. J.; Moreira, R. F. P. M. Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor. J. Photochem. Photobiology A: Chem. 2002, 149, 147–154. DOI: 10.1016/S1010-6030(02)00015-1.
  • Doke, K. M.; Yusufi, M.; Joseph, R. D.; Khan, E. M. Comparative Adsorption of Crystal Violet and Congo Red onto ZnCl2 Activated Carbon. J Disper Sci Technol. 2016, 37, 1671–1681.
  • Shaban, M.; Abukhadra, M. R.; Hamd, A.; Amin, R. R.; Khalek, A. A. Photocatalytic Removal of Congo Red Dye Using MCM-48/Ni2O3 Composite Synthesized Based on Silica Gel Extracted from Rice Husk Ash; Fabrication and Application. J. Environ. Manage. 2017, 204, 189–199. DOI: 10.1016/j.jenvman.2017.08.048.
  • Sun, D.; Zhang, Z.; Wang, M.; Wu, Y. Adsorption of Reactive Dyes on Activated Carbon Developed from Enteromorpha Prolifera. AJAC. 2013, 04, 17–26. DOI: 10.4236/ajac.2013.47A003.
  • Sun, W.; Chen, L.; Meng, S.; Wang, Y.; Li, H.; Han, Y.; Wei, N. Synthesis of NiO Nanospheres with Ultrasonic Method for Supercapacitors. Mat. Sci. Semicon. Proc. 2014, 17, 129–133. DOI: 10.1016/j.mssp.2013.09.002.
  • Torki, F.; Faghihian, H. Visible Light Degradation of Naproxen by Enhanced Photocatalytic Activity of NiO and NiS, Scavenger Study and Focus on Catalyst Support and Magnetization. Photochem. Photobiol. 2018, 94, 491–502. DOI: 10.1111/php.12906.
  • Jeong, M. G.; Park, E. J.; Jeong, B.; Kim, D. H.; Kim, Y. D. Toluene Combustion over NiO Nanoparticles on Mesoporous SiO2 Prepared by Atomic Layer Deposition. Chem. Eng. J. 2014, 237, 62–69. DOI: 10.1016/j.cej.2013.09.100.
  • Zhu, L.-W.; Li, H.-X.; Ren, Z.-G.; Wang, H.-F.; Yao, W.; Lang, J.-P. Engineering Growth of TiO2 Nanofibers on NiO–Ni Foam with Cleaning and Separation Functions. RSC Adv. 2013, 3, 15421–15426. DOI: 10.1039/c3ra40634b.
  • An, X.; Zhang, Y. Fabrication of NiO Quantum Dot-Modified ZnO Nanorod Arrays for Efficient Photoelectrochemical Water Splitting. Appl. Phys. A 2017, 123, 647. DOI: 10.1007/s00339-017-1237-2.
  • Sharma, A.; Lee, B. K. Integrated Ternary Nanocomposite of TiO2/NiO/Reduced Graphene Oxide as a Visible Light Photocatalyst for Efficient Degradation of o-Chlorophenol. J. Environ. Manage. 2016, 181, 563–573. DOI: 10.1016/j.jenvman.2016.07.016.
  • Yin, X. L.; Li, L. L.; Jiang, W. J.; Zhang, Y.; Zhang, X.; Wan, L. J.; Hu, J. S. MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation. ACS Appl. Mater. Interfaces. 2016, 8, 15258–15266. DOI: 10.1021/acsami.6b02687.
  • Wu, K.; Du, Y.; Tang, H.; Chen, Z.; Lian, T. Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods. J. Am. Chem. Soc. 2015, 137, 10224–10230. DOI: 10.1021/jacs.5b04564.
  • Chen, W.; Wang, Y.; Liu, M.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W. In Situ Photodeposition of Cobalt on CdS Nanorod for Promoting Photocatalytic Hydrogen Production under Visible Light Irradiation. Appl. Surf. Sci. 2018, 444, 485–490. DOI: 10.1016/j.apsusc.2018.03.068.
  • Chen, C.; Li, Z.; Lin, H.; Wang, G.; Liao, J.; Li, M.; Lv, S.; Li, W. Enhanced Visible Light Photocatalytic Performance of ZnO Nanowires Integrated with CdS and Ag2S. Dalton Trans. 2016, 45, 3750–3758. DOI: 10.1039/C5DT04533A.
  • Luo, Y.; Jia, Y.; Zhang, D.; Cheng, X. Coaxial Electrospinning Method for the Preparation of TiO2 @CdS/PVA Composite Nanofiber Mat and Investigation on its Photodegradation Catalysis. Photochem. Photobiol. 2016, 92, 515–522. DOI: 10.1111/php.12591.
  • Karimipour, M.; Molaei, M. Red Florescent Ag2S-CdS Hybrid Nanoparticles Prepared by a One Pot and Rapid Microwave Method. Electron. Mater. Lett. 2016, 12, 205–210. DOI: 10.1007/s13391-015-5278-4.
  • Vattikuti, S. V. P.; Byon, C.; Reddy, C. V. ZrO2/MoS2 Heterojunction Photocatalysts for Efficient Photocatalytic Degradation of Methyl Orange. Electron. Mater. Lett. 2016, 12, 812–823. DOI: 10.1007/s13391-016-6267-y.
  • An, L.; Wang, G.; Cheng, Y.; Zhao, L.; Gao, F.; Cheng, Y. Synthesis of CdS/ZnO Nanocomposite and Its Enhanced Photocatalytic Activity in Degradation of Methyl Orange Russ. Russ. J. Phys. Chem. 2015, 89, 1878–1883. DOI: 10.1134/S0036024415100180.
  • Dehmukh, K.; Mukherjee, M.; Bhushan, S. Structural and Optical Studies on La Doped CdS Nanocrystalline Films. Turk. J. Phys. 2012, 361, 9–21. DOI: 10.3906/fiz-1102-1.
  • Vaizoğullar, A. İ. Needle-Like La-Doped MgO Photocatalyst: Synthesis, Characterization and Photodegradation of Flumequine Antibiotic under UV Irradiation. J. Elec. Mater. 2018, 47, 6751–6758. DOI: 10.1007/s11664-018-6591-0.
  • Zhou, Q.; Li, L.; Xin, Z.; Yu, Y.; Wang, L.; Zhang, W. Visible Light Response and Heterostructure of Composite CdS@ ZnS–ZnO to Enhance Its Photocatalytic Activity. J. Alloys Compd. 2020, 813, 152190. DOI: 10.1016/j.jallcom.2019.152190.
  • Nie, R.; Shi, J.; Du, W.; Hou, Z. Ni2O3-around-Pd Hybrid on Graphene Oxide: An Efficient Catalyst for Ligand-Free Suzuki–Miyaura Coupling Reaction. Appl. Catal. A-Gen. 2014, 473, 1–6. DOI: 10.1016/j.apcata.2013.12.029.
  • Ahmed, B.; Kumar, S.; Kumar, S.; Ojha, A. K. Shape Induced Spherical, Sheets and Rods, Optical and Magnetic Properties of CdS Nanostructures with Enhanced Photocatalytic Activity for Photodegradation of Methylene Blue Dye under Ultra-Violet Irradiation. J. Alloys Compd. 2016, 679, 324–334. DOI: 10.1016/j.jallcom.2016.03.295.
  • Cui, H.; Zhou, Y.; Mei, J.; Li, Z.; Xu, S.; Yao, C. Synthesis of CdS/BiOBr Nanosheets Composites with Efficient Visible-Light Photocatalytic Activity. Phys. Chem. Solids 2018, 112, 80–87. DOI: 10.1016/j.jpcs.2017.09.011.
  • Kganyago, P.; Mahlaule-Glory, L. M.; Mathipa, M. M.; Ntsendwana, B.; Mketo, N.; Mbita, Z.; Hintsho-Mbita, N. C. Synthesis of NiO Nanoparticles via a Green Route Using Monsonia Burkeana: The Physical and Biological Properties. J. Photochem. Photobiol. B Biol. 2018, 182, 18–26. DOI: 10.1016/j.jphotobiol.2018.03.016.
  • Fan, H. M.; Fan, X. F.; Ni, Z. H.; Shen, Z. X.; Feng, Y. P.; Zou, B. S. Orientation-Dependent Raman Spectroscopy of Single Wurtzite CdS Nanowires. J. Phys. Chem. C 2008, 112, 1865–1870. DOI: 10.1021/jp7096839.
  • Shen, S.; Guo, L. Growth of Quantum-Confined CdS Nanoparticles inside Ti-MCM-41 as a Visible Light Photocatalyst. Mater. Res. Bull. 2008, 43, 437–446. DOI: 10.1016/j.materresbull.2007.02.034.
  • Reddy, D. A.; Choi, J.; Lee, S.; Kim, Y.; Hong, S.; Kumar, D. P.; Kim, T. K. Hierarchical Dandelion-Flower-like Cobalt-Phosphide Modified CdS/Reduced Graphene oxide-MoS2 Nanocomposites as a Noble-Metal-Free Catalyst for Efficient Hydrogen Evolution from Water. Catal. Sci. Technol. 2016, 6, 6197–6206. DOI: 10.1039/C6CY00768F.
  • Reddy, N. L.; Rao, V. N.; Kumari, M. M.; Ravi, P.; Sathish, M.; Shankar, M. V. Effective Shuttling of Photoexcitons on CdS/NiO Core/Shell Photocatalysts for Enhanced Photocatalytic Hydrogen Production. Mater. Res. Bull. 2018, 101, 223–231. DOI: 10.1016/j.materresbull.2018.01.043.
  • Gonzalez-Elipe, A. R.; Holgado, J. P.; Alvarez, R.; Munuera, G. Use of Factor Analysis and XPS to Study Defective Nickel Oxide. J. Phys. Chem. 1992, 96, 3080–3086. DOI: 10.1021/j100186a056.
  • Channei, D.; Chansaenpak, K.; Jannoey, P.; Phanichphant, S. The Staggered Heterojunction of CeO2/CdS Nanocomposite for Enhanced Photocatalytic Activity. Solid State Sci. 2019, 96, 105951. DOI: 10.1016/j.solidstatesciences.2019.105951.
  • Li, J.; Qian, X.; Peng, Y.; Lin, J. Hierarchical Structure NiO/CdS for Highly Performance H2 Evolution. Mater. Lett. 2018, 224, 82–85. DOI: 10.1016/j.matlet.2018.04.083.
  • Jouini, K.; Raouafi, A.; Dridi, W.; Daoudi, M.; Mustapha, B.; Chtourou, R.; Hosni, F. Investigation of Gamma-Ray Irradiation Induced Phase Change from NiO to Ni2O3 for Enhancing Photocatalytic Performance. Optik 2019, 195, 163109. DOI: 10.1016/j.ijleo.2019.163109.
  • Mochizuki, S.; Saito, T. Intrinsic and Defect-Related Luminescence of NiO. Physica B Condens. Matter 2009, 404, 4850–4853. DOI: 10.1016/j.physb.2009.08.166.
  • Vázquez, A.; Hernández-Uresti, D. B.; Obregón, S. Electrophoretic Deposition of CdS Coatings and Their Photocatalytic Activities in the Degradation of Tetracycline Antibiotic. Appl. Surf. Sci. 2016, 386, 412–417. DOI: 10.1016/j.apsusc.2016.06.034.
  • Cai, W.; Li, Z.; Sui, J. A Facile Single-Source Route to CdS Nanorods. Nanotechnology 2008, 19, 465606. DOI: 10.1088/0957-4484/19/46/465606.
  • Deng, C.; Hu, H.; Yu, H.; Wang, M.; Ci, M.; Wang, L.; Zhu, S.; Wu, Y.; Le, H. 1D Hierarchical CdS NPs/NiO NFs Heterostructures with Enhanced Photocatalytic Activity under Visible Light Irradiation. Adv. Powder Technol. 2020, 465606–465212. DOI: 10.1016/j.apt.2020.06.003.
  • Yang, T.; Peng, J.; Zheng, Y.; He, X.; Hou, Y.; Wu, L.; Fu, X. Enhanced Photocatalytic Ozonation Degradation of Organic Pollutants by ZnO Modified TiO2 Nanocomposites. Appl. Catal. B 2018, 221, 223–234. DOI: 10.1016/j.apcatb.2017.09.025.
  • Kannusamy, P.; Sivalingam, T. Chitosan–ZnO/Polyaniline Hybrid Composites: Polymerization of Aniline with Chitosan–ZnO for Better Thermal and Electrical Property. Polym. Degrad. Stabil. 2013, 98, 988–996. DOI: 10.1016/j.polymdegradstab.2013.02.015.
  • Alipour, A.; Lakouarj, M. M. Photocatalytic Degradation of RB Dye by CdS-Decorated Nanocomposites Based on Polyaniline and Hydrolyzed Pectin: Isotherm and Kinetic. J. Environ. Chem. Eng. 2019, 7, 102837. DOI: 10.1016/j.jece.2018.102837.
  • Yi, H.; Jiang, M.; Huang, D.; Zeng, G.; Lai, C.; Qin, L.; Zhou, C.; Li, B.; Liu, X.; Cheng, M.; et al. Advanced Photocatalytic Fenton-like Process over Biomimetic hemin-Bi2WO6 with Enhanced pH. J. Taiwan Inst. Chem. E 2018, 93, 184–192. DOI: 10.1016/j.jtice.2018.06.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.