107
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study on the structure–activity relationship between the molecular structure of anionic Gemini surfactants and the rheological properties of their micelle solutions

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 490-500 | Received 16 Mar 2020, Accepted 12 Oct 2020, Published online: 24 Nov 2020

References

  • Zana, R. Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution. J. Colloid Interface Sci. 2002, 248, 203–220. DOI: https://doi.org/10.1006/jcis.2001.8104.
  • Mondal, M. H.; Malik, S.; Roy, A.; Saha, R.; Saha, B. Modernization of Surfactant Chemistry in the Age of Gemini and Bio-Surfactants: A Review. RSC Adv. 2015, 5, 92707–92718.
  • Brinchi, L.; Germani, R.; Goracci, L.; Savelli, G.; Bunton, C. A. Decarboxylation and Dephosphorylation in New Gemini Surfactants: Changes in Aggregate Structures. Langmuir 2002, 18, 7821–7825.
  • In, M.; Bec, V.; Aguerre-Chariol, O.; Zana, R. Quaternary Ammonium Bromide Surfactant Oligomers in Aqueous Solution: Self-Association and Microstructure. Langmuir 2000, 16, 141–148.
  • Danino, D.; Talmon, Y.; Zana, R. Alkanediyl-.Alpha.,. Omega.-Bis (Dimethylalkylammonium Bromide) Surfactants (Dimeric Surfactants). 5. aggregation and Microstructure in Aqueous Solutions. Langmuir 1995, 11, 1448–1456.
  • Menger, F. M.; Littau, C. Gemini-Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113, 1451–1452.
  • Qiu, L.-G.; Cheng, M.-J.; Xie, A.-J.; Shen, Y.-H. Study on the Viscosity of Cationic Gemini Surfactant-Nonionic Polymer Complex in Water. J. Colloid Interface Sci. 2004, 278, 40–43. DOI: https://doi.org/10.1016/j.jcis.2004.05.012.
  • Kamal, M. S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfact. Deterg. 2016, 19, 223–236.
  • Fang, S.; Dai, C.; Wu, X. Study on Synthesis and Properties of Gemini Surfactant Used as Viscoelastic Surfactant. (VES), Proceedings of the International Field Exploration and Development Conference 2017, Springer: 2019; pp 1074–1083.
  • Wu, H.; Zhou, Q.; Xu, D.; Sun, R.; Zhang, P.; Bai, B.; Kang, W. SiO2 Nanoparticle-Assisted Low-Concentration Viscoelastic Cationic Surfactant Fracturing Fluid. J. Mol. Liq. 2018, 266, 864–869.
  • Yang, C.; Song, Z.; Zhao, J.; Hu, Z.; Zhang, Y.; Jiang, Q. Self-Assembly Properties of Ultra-Long-Chain Gemini Surfactants Bearing Multiple Amide Groups with High Performance in Fracturing Fluid Application. Colloids Surf., A. 2017, 523, 62–70.
  • Liu, Y.; Guo, L.; Bi, K. Synthesis of Cationic Gemini Surfactants and Their Application in Water Locking Damage. Fine and Specialty Chem. 2011, 19, 8–10.
  • Chen, Z.; Mi, H.; Liu, X.; Xia, K.; Ge, F.; Li, X.; Zhang, X. Preparation and Characterization of an Anionic Gemini Surfactant for Enhanced Oil Recovery in a Hypersaline Reservoir. J. Surfactants Deterg. 2019, 22, 1309–1317.
  • Kiani, S.; Rogers, S. E.; Sagisaka, M.; Alexander, S.; Barron, A. R. A New Class of Low Surface Energy Anionic Surfactant for Enhanced Oil Recovery. Energy Fuels 2019, 33, 3162–3175.
  • Mpelwa, M.; Tang, S.; Jin, L.; Hu, R. New Sulfonate Gemini Surfactants: synthesis and Evaluation for Enhanced Oil Recovery Applications. J. Dispersion Sci. Technol. 2019, 1–9.
  • Mpelwa, M.; Tang, S.; Jin, L.; Hu, R.; Wang, C.; Hu, Y. The Study on the Properties of the Newly Extended Gemini Surfactants and Their Application Potentials in the Petroleum Industry. J. Pet. Sci. Eng. 2020, 186, 106799.
  • Alvarado, V.; Manrique, E. Enhanced Oil Recovery: An Update Review. Energies 2010, 3, 1529–1575.
  • Siggel, L.; Santa, M.; Hansch, M.; Nowak, M.; Ranft, M.; Weiss, H.; Hajnal, D.; Schreiner, E.; Oetter, G.; Tinsley, J. A New Class of Viscoelastic Surfactants for Enhanced Oil Recovery. SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, Society of Petroleum Engineers: Tulsa, Oklahoma, USA, 2012. DOI: https://doi.org/10.2118/153969-MS.
  • Han, Y.; Wang, Y. Aggregation Behavior of Gemini Surfactants and Their Interaction with Macromolecules in Aqueous Solution. Phys. Chem. Chem. Phys. 2011, 13, 1939–1956. DOI: https://doi.org/10.1039/c0cp01196g.
  • Kumar, S.; Awang, M.; Ahmed, S.; Dehraj, N. U.; Saleem, Y. S. Worm-Like Micelles as a Mobility Control Agent for Chemical Enhanced Oil Recovery. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia. Society of Petroleum Engineers: Nusa Dua, Bali, Indonesia, 2015. DOI: https://doi.org/10.2118/176075-MS.
  • Beaumont, J.; Louvet, N.; Divoux, T.; Fardin, M.-A.; Bodiguel, H.; Lerouge, S.; Manneville, S.; Colin, A. Turbulent Flows in Highly Elastic Wormlike Micelles. Soft Matter 2013, 9, 735–749.
  • Zhu, Y.; Fan, J.; Liu, X.; Li, J. Studies on Viscoelastic Surfactants for Its Potential EOR Application in the Low Permeability Reservoirs. SPE improved oil recovery conference, Tulsa, Oklahoma, USA, Society of Petroleum Engineers: Tulsa, Oklahoma, USA, 2016. DOI: https://doi.org/10.2118/179551-MS.
  • Le Van, S.; Chon, B. H. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology. Energies 2016, 9, 711.
  • Urbissinova, T.; Trivedi, J. J.; Kuru, E. 2010. Effect of Elasticity during Viscoelastic Polymer Flooding-a Possible Mechanism of Increasing the Sweep Efficiency. SPE Western Regional Meeting, Society of Petroleum Engineers. DOI: https://doi.org/10.2118/133471-MS.
  • Zhang, Z.; Li, J.; Zhou, J. Microscopic Roles of “Viscoelasticity” in HPMA Polymer Flooding for EOR. Transp. Porous Med. 2011, 86, 199–214.
  • Gaonkar, A. G. Effects of Salt, Temperature, and Surfactants on the Interfacial Tension Behavior of a Vegetable Oil/Water System. J. Colloid Interface Sci. 1992, 149, 256–260.
  • Al-Sahhaf, T.; Elkamel, A.; Suttar Ahmed, A.; Khan, A. The Influence of Temperature, Pressure, Salinity, and Surfactant Concentration on the Interfacial Tension of the n-Octane-Water System. Chem. Eng. Commun. 2005, 192, 667–684.
  • Ghorbanizadeh, S.; Rostami, B. Surface and Interfacial Tension Behavior of Salt Water Containing Dissolved Amphiphilic Compounds of Crude Oil: The Role of Single-Salt Ionic Composition. Energy Fuels 2017, 31, 9117–9124.
  • Tang, S.; Zheng, Y.; Yang, W.; Wang, J.; Fan, Y.; Lu, J. Experimental Study of Sulfonate Gemini Surfactants as Thickeners for Clean Fracturing Fluids. Energies 2018, 11, 3182.
  • Zhang, W.; Mao, J.; Yang, X.; Zhang, H.; Zhang, Z.; Yang, B.; Zhang, Y.; Zhao, J. Study of a Novel Gemini Viscoelastic Surfactant with High Performance in Clean Fracturing Fluid Application. Polymers 2018, 10, 1215.
  • Nanjun, L.; Zhongbin, Y.; Zheng, S. Research on New Profile Control System for Low Permeability Fractured Reservoirs. Pet. Geol. Recovery Efficiency 2010, 17, 105–107.
  • Manne, S.; Schäffer, T.; Huo, Q.; Hansma, P.; Morse, D.; Stucky, G.; Aksay, I. A. Gemini Surfactants at Solid − Liquid Interfaces: control of Interfacial Aggregate Geometry. Langmuir 1997, 13, 6382–6387.
  • Yahui, Z.; Shanfa, T.; Jiaxin, W.; Mpelwa, M.; Mingzheng, P.; Tianyuan, Z. Effect of Micelle Structure on the Viscosity of Sulfonate Gemini Surfactant Solution. Arab. J. Sci. Eng. 2019, 44, 259–267.
  • Zhao, J.; Surfactants, G. Role and Significance of Its Spacer in Self-Assembly. Prog. Chem. 2014, 26, 1339–1351.
  • Menger, F.; Keiper, J.; Azov, V. Gemini Surfactants with Acetylenic Spacers. Langmuir 2000, 16, 2062–2067.
  • Fan, Y.; Han, Y. C.; Wang, Y. L. Effects of Molecular Structures on Aggregation Behavior of Gemini Surfactants in Aqueous Solutions. Acta Phys. -Chim. Sin.  2016, 32, 214–226.
  • Han, L.; Chen, H.; Luo, P. Viscosity Behavior of Cationic Gemini Surfactants with Long Alkyl Chains. Surf. Sci. 2004, 564, 141–148.
  • Zheng, O.; Zhao, J.; You, Y. Effect of Spacer Chain Length on Aggregation of C12-S-C12 · 2Br Dimeric Surfactants in Aqueous Solutions. Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao/Chemical Journal of Chinese Universities 2002, 23, 1352–1355.
  • Krishnan, R. S. G.; Thennarasu, S.; Mandal, A. B. Self-Assembling Characteristics of a New Nonionic Gemini Surfactant. J. Phys. Chem. B 2004, 108, 8806–8816.
  • Rehage, H.; Hoffmann, H. Rheological Properties of Viscoelastic Surfactant Systems. J. Phys. Chem. 1988, 92, 4712–4719.
  • Clint, J. H. Surfactant Aggregation. Springer Science & Business Media, Netherlands; 2012.
  • Zhao, C-Y.; Tang, S-F.; Tian, L.; Xue, W-J.; Zhou, T-Y.; Cui, Y. Q, Study on Viscosity Behavior of Carboxylate Gemini Surfactant Solution. Mod. Chem. Ind. 2017, 37, 125–128.
  • Xie, D. H.; Zhao, J. Unique Aggregation Behavior of a Carboxylate Gemini Surfactant with a Long Rigid Spacer in Aqueous Solution. Langmuir 2013, 29, 545–553. DOI: https://doi.org/10.1021/la304160s.
  • Oelschlaeger, C.; Buhler, E.; Waton, G.; Candau, S. Synergistic Effects in Mixed Wormlike Micelles of Dimeric and Single-Chain Cationic Surfactants at High Ionic Strength. Eur. Phys. J. E. Soft Matter 2003, 11, 7–20. DOI: https://doi.org/10.1140/epje/i2002-10124-y.
  • Hong, Y.; Shen, Y.; Yang, X.; Liu, G.; Zhang, L. Synthesis and Viscosity Behavior of N, N'-Bis (Hexadecyl Dimethyl)-1, 2-Dibromide-Ethanediyl Ammonium Salt. Fine Chem./Jingxi Huagong 2013, 30, 433–438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.