473
Views
13
CrossRef citations to date
0
Altmetric
Articles

Fabrication of superhydrophobic surfaces with Cassie-Baxter state

&
Pages 1099-1111 | Received 12 Jun 2020, Accepted 12 Oct 2020, Published online: 01 Dec 2020

References

  • Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202, 1–8.
  • Bhushan, B.; Jung, Y. C. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Prog. Mat. Sci. 2011, 56, 1–108.
  • Yong, J. L.; Yang, Q.; Chen, F.; Zhang, D. S.; Farooq, U.; Du, G. Q.; Hou, X. A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond Laser-Induced Line-Patterned Surfaces. J. Mater. Chem. A. 2014, 2, 5499–5507.
  • Yang, Z.; Tian, Y. L.; Yang, C. J.; Wang, F. J.; Liu, X. P. Modification of Wetting Property of Inconel 718 Surface by Nanosecond Laser Texturing. Appl. Surf. Sci. 2017, 414, 313–324.
  • Yang, C. J.; Mei, X. S.; Tian, Y. L.; Zhang, D. W.; Li, Y.; Liu, X. P. Modification of Wettability Property of Titanium by Laser Texturing. Int. J. Adv. Manuf. Technol. 2016, 87, 1663–1670. DOI: https://doi.org/10.1007/s00170-016-8601-9.
  • Su, B.; Tian, Y.; Jiang, L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748. DOI: https://doi.org/10.1021/jacs.5b12728.
  • Tian, Y. L.; Zhao, Y. C.; Yang, C. J.; Wang, F. J.; Liu, X. P.; Jing, X. B. Fabrication of Bio-Inspired Nitinol Alloy Surface with Tunable Anisotropic Wetting and High Adhesive Ability. J. Colloid Interface Sci. 2018, 527, 328–338. DOI: https://doi.org/10.1016/j.jcis.2018.05.013.
  • Li, H.; Yu, S.; Han, X.; Zhao, Y. A Stable Hierarchical Superhydrophobic Coating on Pipeline Steel Surface with Self-Cleaning, Anticorrosion, and anti-Scaling Properties. Colloids Surf. A. 2016, 503, 43–52.
  • Su, F. H.; Yao, K. Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770. DOI: https://doi.org/10.1021/am501539b.
  • Bhushan, B.; Koch, K.; Yong, C. J. Biomimetic Hierarchical Structure for Self-Cleaning. Appl. Phys. Lett. 2008, 93, 093101–093101.
  • Li, B.; Liu, C. S.; Qi, Y. B.; Cao, D. C.; Wan, Y. Preparation of Flower-like ZnO Micro-Sphere Powders and Their Surface Wettability Modification. AMR 2011, 412, 17–20.
  • Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. ChemInform Abstract: Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. Cheminform 2010, 31, 1251.
  • Hang, T.; Hu, A.; Ling, H.; Li, M.; Mao, D. Superhydrophobic Nickel Films with Micro-Nano Hierarchical Structure Prepared by Electrodeposition. Appl. Surf. Sci. 2010, 256, 2400–2404.
  • Kamal, S. A.; Ritikos, R.; Rahman, S. A. Wetting Behavior of Carbon Nitride Nanostructures Grown by Plasma Enhanced Chemical Vapor Deposition Technique. Appl. Surf. Sci. 2015, 328, 146–153.
  • Lakshmi, R. V.; Basu, B. J. Fabrication of Superhydrophobic Sol-Gel Composite Films Using Hydrophobically Modified Colloidal Zinc Hydroxide. J. Colloid Interface Sci. 2009, 339, 454–460.
  • Manca, M.; Cannavale, A.; De Marco, L.; Aricò, A. S.; Cingolani, R.; Gigli, G. Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing. Langmuir 2009, 25, 6357–6362. DOI: https://doi.org/10.1021/la804166t.
  • Cremaldi, J.; Bhushan, B. Fabrication of Bioinspired, Self-Cleaning Superliquiphilic/Phobic Stainless Steel Using Different Pathways. J. Colloid Interface Sci. 2018, 518, 284–297. DOI: https://doi.org/10.1016/j.jcis.2018.02.034.
  • Huang, Y.; Sarkar, D. K.; Gallant, D.; Chen, X. G. Corrosion Resistance Properties of Superhydrophobic Copper Surfaces Fabricated by One-Step Electrochemical Modification Process. Appl. Surf. Sci. 2013, 282, 689–694.
  • Liu, Y.; Li, S. Y.; Zhang, J. J.; Liu, J. A.; Han, Z. W.; Ren, L. Q. Corrosion Inhibition of Biomimetic Super-Hydrophobic Electrodeposition Coatings on Copper Substrate. Corros. Sci. 2015, 94, 190–196.
  • Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994.
  • Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–550.
  • Ryan, B. J.; Poduska, K. M. Roughness Effects on Contact Angle Measurements. Am. J. Phys. 2008, 76, 1074–1077.
  • Kumar, A.; Gogoi, B. Development of Durable Self-Cleaning Superhydrophobic Coatings for Aluminium Surfaces via Chemical Etching Method. Tribol. Int. 2018, 122, 114–118.
  • Oner, D.; McCarthy, T. J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000, 16, 7777–7782.
  • Li, Y.; Jia, W.-Z.; Song, Y.-Y.; Xia, X.-H. Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chem. Mater. 2007, 19, 5758–5764.
  • Xu, W.; Lan, Z.; Peng, B. L.; Weng, R. Molecular Dynamics Simulation on the Wetting Characteristic of Micro-Droplet on Surfaces with Different Free Energies. Acta Phys. Sin. 2015, 64, 0216801.
  • Zhang, Q. Y.; Sun, D. K.; Zhu, M. F. A Multicomponent Multiphase Lattice Boltzmann Model with Large Liquid-Gas Density Ratios for Simulations of Wetting Phenomena. Chinese Phys. B. 2017, 26, 084701–084710.
  • Liu, S. Y.; Shen, Y. Z.; Zhu, C. L.; et al. Energy Dissipation Mechanism of Droplets Impacting Superhydrophobic Surfaces. Acta Aeronaut. Astronaut. Sin. 2017, 38, 520710.
  • Brackbill, J. U.; Kothe, D. B.; Zemach, C. Continuum method of establishing surface tension. Calculation Physics 1992, 100, 335–354.
  • Liu, J.-L.; Feng, X.-Q.; Wang, G.; Yu, S.-W. superhydrophobic a hydrophilic matrix mechanism. J. physical condensation. Things. In 2007, 19, 356002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.