177
Views
6
CrossRef citations to date
0
Altmetric
Articles

A spontaneous interfacial process to produce silica Janus nanosheets as perfect emulsifiers in pickering emulsions

, ORCID Icon &
Pages 1151-1160 | Received 12 Jul 2020, Accepted 12 Oct 2020, Published online: 24 Nov 2020

References

  • Rotello, V. M. Nanoparticles: Building Blocks for Nanotechnology; Kluwer Academic/Plenum Publishers: New York, US, 2004.
  • Gorrasi, G. Polymer Nanocomposites; MDPI AG: Basel, Switzerland, 2018.
  • Tripathy, D. K.; Sahoo, B. P. Properties and Applications of Polymer Nanocomposites: Clay and Carbon Based Polymer Nanocomposites; Springer Berlin Heidelberg: Berlin, Germany, 2017.
  • Huang, X.; Zhi, C. Polymer Nanocomposites: Electrical and Thermal Properties; Springer International Publishing: Switzerland, 2016.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arabian J. Chem. 2019, 12, 908–931.
  • Cheraghian, G.; Hendraningrat, L. A Review on Applications of Nanotechnology in the Enhanced Oil Recovery Part A: Effects of Nanoparticles on Interfacial Tension. Int. Nano Lett. 2016, 6, 129–138.
  • Pielichowski, K.; Majka, T. M. Polymer Composites with Functionalized Nanoparticles: Synthesis, Properties, and Applications; Elsevier Science: Amsterdam, Netherlands, 2018.
  • Chou, T. W.; Sun, C. T. Nanocomposites; DEStech Publications: Pennsylvania, USA, 2012.
  • Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. DOI: https://doi.org/10.3762/bjnano.9.98.
  • Talapin, D. V.; Shevchenko, E. V. Introduction: Nanoparticle Chemistry. Chem. Rev. 2016, 116, 10343–10345. DOI: https://doi.org/10.1021/acs.chemrev.6b00566.
  • Nagarajan, R.; Hatton, T. A.; Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization; American Chemical Society: Washington, DC, USA, 2008.
  • Walther, A.; Müller, A. H. E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013, 113, 5194–5261. DOI: https://doi.org/10.1021/cr300089t.
  • Su, H.; Hurd Price, C. A.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus Particles: Design, Preparation, and Biomedical Applications. Mater Today Bio 2019, 4, 100033. DOI: https://doi.org/10.1016/j.mtbio.2019.100033.
  • Anker, J. N.; Behrend, C. J.; Huang, H.; Kopelman, R. Magnetically-Modulated Optical Nanoprobes (MagMOONs) and Systems. J. Magn. Magn. Mater. 2005, 293, 655–662. DOI: https://doi.org/10.1016/j.jmmm.2005.01.031.
  • Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R. Microrheology with Modulated Optical Nanoprobes (MOONs). J. Magn. Magn. Mater. 2005, 293, 663–670. DOI: https://doi.org/10.1016/j.jmmm.2005.02.072.
  • Howse, J. R.; Jones, R. A.; Ryan, A. J.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Phys. Rev. Lett. 2007, 99, 048102.[Database] DOI: https://doi.org/10.1103/PhysRevLett.99.048102.
  • Ojala, J.; Sirviö, J. A.; Liimatainen, H. Nanoparticle Emulsifiers Based on Bifunctionalized Cellulose Nanocrystals as Marine Diesel Oil–Water Emulsion Stabilizers. Chem. Eng. J. 2016, 288, 312–320. DOI: https://doi.org/10.1016/j.cej.2015.10.113.
  • Zou, S.; Wang, C.; Gao, Q.; Tong, Z. Surfactant-Free Multiple Pickering Emulsions Stabilized by Combining Hydrophobic and Hydrophilic Nanoparticles. J. Dispersion Sci. Technol. 2013, 34, 173–181. DOI: https://doi.org/10.1080/01932691.2012.657947.
  • Sharifzadeh, E.; Salami-Kalajahi, M.; Salami Hosseini, M.; Razavi Aghjeh, M. K.; Najafi, S.; Jannati, R.; Hatef, Z. Defining the Characteristics of Spherical Janus Particles by Investigating the Behavior of Their Corresponding Particles at the Oil/Water Interface in a Pickering Emulsion. J. Dispersion Sci. Technol. 2017, 38, 985–991. DOI: https://doi.org/10.1080/01932691.2016.1216861.
  • Perro, A.; Meunier, F.; Schmitt, V.; Ravaine, S. Production of Large Quantities of “Janus” Nanoparticles Using Wax-in-Water Emulsions. Colloids Surf. A 2009, 332, 57–62.
  • Sharifzadeh, E.; Salami-Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. A Temperature-Controlled Method to Produce Janus Nanoparticles Using High Internal Interface Systems: Experimental and Theoretical Approaches. Colloids Surf. A 2016, 506, 56–62.
  • Sharifzadeh, E.; Salami-Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. Synthesis of Silica Janus Nanoparticles by Buoyancy Effect-Induced Desymmetrization Process and Their Placement at the PS/PMMA Interface. Colloid Polym. Sci. 2017, 295, 25–36. DOI: https://doi.org/10.1007/s00396-016-3977-5.
  • Hong, L.; Jiang, S.; Granick, S. Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir 2006, 22, 9495–9499. DOI: https://doi.org/10.1021/la062716z.
  • Perro, A.; Meunier, F.; Schmitt, V.; Ravaine, S. Production of Large Quantities of “Janus” Nanoparticles Using Wax-in-Water Emulsions. Colloids Surf., A 2009, 332, 57–62.
  • Binks, B. P.; Fletcher, P. D. I. Particles Adsorbed at the Oil − Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and “Janus” Particles. Langmuir 2001, 17, 4708–4710.
  • Jiang, S.; Granick, S. Janus Balance of Amphiphilic Colloidal particles. J. Chem. Phys. 2007, 127, 161102. DOI: https://doi.org/10.1063/1.2803420.
  • Hou, Y.; Zhang, G.; Tang, X.; Si, Y.; Song, X.; Liang, F.; Yang, Z. Janus Nanosheets Synchronously Strengthen and Toughen Polymer Blends. Macromolecules 2019, 52, 3863–3868.
  • Chen, Y.; Liang, F.; Yang, H.; Zhang, C.; Wang, Q.; Qu, X.; Li, J.; Cai, Y.; Qiu, D.; Yang, Z. Janus Nanosheets of Polymer–Inorganic Layered Composites. Macromolecules 2012, 45, 1460–1467.
  • Kim, S. M.; Chakrabarti, K.; Oh, E. O.; Whang, C. M. Effects of pH during the Base Catalyzed Reaction of Two-Step Acid/Base Catalyzed Process on the Microstructures and Physical Properties of Poly(Dimethylsiloxane) Modified Silica Xerogels. J. Sol-Gel Sci. Technol. 2003, 27, 149–155. DOI: https://doi.org/10.1023/A:1023794300032.
  • Wagh, P. B.; Begag, R.; Pajonk, G. M.; Rao, A. V.; Haranath, D. Comparison of Some Physical Properties of Silica Aerogel Monoliths Synthesized by Different Precursors. Mater. Chem. Phys. 1999, 57, 214–218. DOI: https://doi.org/10.1016/S0254-0584(98)00217-X.
  • Rao, K. S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K. A Novel Method for Synthesis of Silica Nanoparticles. J. Colloid Interface Sci. 2005, 289, 125–131. DOI: https://doi.org/10.1016/j.jcis.2005.02.019.
  • De, G.; Karmakar, B.; Ganguli, D. Hydrolysis–Condensation Reactions of TEOS in the Presence of Acetic Acid Leading to the Generation of Glass-like Silica Microspheres in Solution at Room Temperature. J. Mater. Chem. 2000, 10, 2289–2293. DOI: https://doi.org/10.1039/b003221m.
  • Amirshaqaqi, N.; Salami-Kalajahi, M.; Mahdavian, M. Investigation of Corrosion Behavior of Aluminum Flakes Coated by Polymeric Nanolayer: Effect of Polymer Type. Corros. Sci. 2014, 87, 392–396. DOI: https://doi.org/10.1016/j.corsci.2014.06.045.
  • Lambert, J. B. Introduction to Organic Spectroscopy; Macmillan: London, 1987.
  • Xu, L.; Wang, L.; Shen, Y.; Ding, Y.; Cai, Z. Preparation of Hexadecyltrimethoxysilane-Modified Silica Nanocomposite Hydrosol and Superhydrophobic Cotton Coating. Fibers Polym. 2015, 16, 1082–1091.
  • Kim, C. Y.; Lee, H. S.; Choi, C. K.; Yu, Y. H.; Navamathavan, R.; Lee, H. J. Method of Sealing Pores in Porous Low-k SiOC(-H) Films Fabricated Using Plasma-Assisted Atomic Layer Deposition. J. Kor. Phys. Soc. 2013, 62, 1143–1149.
  • Wilamowska-Zawlocka, M.; Puczkarski, P.; Grabowska, Z.; Kaspar, J.; Graczyk-Zajac, M.; Riedel, R.; Sorarù, G. D. Silicon Oxycarbide Ceramics as Anodes for Lithium Ion Batteries: influence of Carbon Content on Lithium Storage Capacity. RSC Adv. 2016, 6, 104597–104607.
  • Samadaei, F.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Banaei, M. A Structural Study on Ethylenediamine- and Poly(Amidoamine)-Functionalized Graphene Oxide: Simultaneous Reduction, Functionalization, and Formation of 3D Structure. RSC Adv. 2015, 5, 71835–71843.
  • Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier Science: San Diego, USA, 2011.
  • Schrader, B. Infrared and Raman Spectroscopy: Methods and Applications; Wiley: Weinheim, Germany, 2008.
  • Sehlleier, Y. H.; Abdali, A.; Schnurre, S. M.; Wiggers, H.; Schulz, C. Surface Functionalization of Microwave Plasma-Synthesized Silica Nanoparticles for Enhancing the Stability of Dispersions. J. Nanopart. Res. 2014, 16, 2557.
  • Kim, T.; Kim, S.; Lee, D-g.; Lim, C.-S.; Seo, B. Preparation of a Branched Amine and Physical and Thermal Studies of Epoxy Compositions Including the Amine Compound. J. Appl. Polym. Sci. 2018, 135, 46233. DOI: https://doi.org/10.1002/app.46233.
  • Amirshaqaqi, N.; Salami-Kalajahi, M.; Mahdavian, M. Corrosion Behavior of Aluminum/Silica/Polystyrene Nanostructured Hybrid Flakes. Iran. Polym. J. 2014, 23, 699–706. DOI: https://doi.org/10.1007/s13726-014-0264-5.
  • Panahian, P.; Salami-Kalajahi, M.; Salami Hosseini, M. Synthesis of Dual Thermosensitive and pH-Sensitive Hollow Nanospheres Based on Poly(Acrylic Acid-b-2-Hydroxyethyl Methacrylate) via an Atom Transfer Reversible Addition–Fragmentation Radical Process. Ind. Eng. Chem. Res. 2014, 53, 8079–8086.
  • Lee, J.; Kim, J.-H.; Choi, K.; Kim, H.-G.; Park, J.-A.; Cho, S.-H.; Hong, S. W.; Lee, J.-H.; Lee, J. H.; Lee, S.; et al. Investigation of the Mechanism of Chromium Removal in (3-Aminopropyl)Trimethoxysilane Functionalized Mesoporous Silica. Sci. Rep. 2018, 8, 12078 DOI: https://doi.org/10.1038/s41598-018-29679-x.
  • Wang, Y.; He, Q.; Qu, H.; Zhang, X.; Guo, J.; Zhu, J.; Zhao, G.; Colorado, H. A.; Yu, J.; Sun, L.; et al. Magnetic Graphene Oxide Nanocomposites: nanoparticles Growth Mechanism and Property Analysis. J. Mater. Chem. C. 2014, 2, 9478–9488.
  • Giermanska-Kahn, J.; Laine, V.; Arditty, S.; Schmitt, V.; Leal-Calderon, F. Particle-Stabilized Emulsions Comprised of Solid Droplets. Langmuir 2005, 21, 4316–4323.
  • Ngai, T.; Fujii, S. Pickering Emulsion and Derived Materials; MDPI AG: Basel, Switzerland, 2017.
  • Dufton, E. A. Pickering Emulsions for the Emulsion Stability and Skin Delivery of Flavonoids Using Different Oil Types; PhD thesis, University of Leeds, Leeds, United Kingdom, 2018.
  • Bryson, K. C.; Löbling, T. I.; Müller, A. H. E.; Russell, T. P.; Hayward, R. C. Using Janus Nanoparticles to Trap Polymer Blend Morphologies during Solvent-Evaporation-Induced Demixing. Macromolecules 2015, 48, 4220–4227.
  • Kumar, A.; Park, B. J.; Tu, F.; Lee, D. Amphiphilic Janus Particles at Fluid Interfaces. Soft Matter 2013, 9, 6604–6617.
  • Sharifzadeh, E. Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface. Chin. J. Polym. Sci. 2019, 37, 164–177. DOI: https://doi.org/10.1007/s10118-019-2178-3.
  • Percebom, A. M.; Costa, L. H. M. Formation and Assembly of Amphiphilic Janus Nanoparticles Promoted by Polymer interactions. Adv. Colloid Interface Sci. 2019, 269, 256–269. DOI: https://doi.org/10.1016/j.cis.2019.05.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.