170
Views
3
CrossRef citations to date
0
Altmetric
Articles

Potential separation of zirconium and some lanthanides of the nuclear and industrial interest from zircon mineral using cation exchanger resin

, , & ORCID Icon
Pages 1642-1651 | Received 27 Aug 2020, Accepted 05 Jan 2021, Published online: 09 Feb 2021

References

  • Gupta, B.; Malik, P.; Irfan, Z. B. Recovery of Uranium, Thorium and Zirconium from Allanite by Extraction Chromatography Using Impregnated Chromosorb. Water Resour. Ind. 2013, 4, 21–31. DOI: 10.1016/j.wri.2013.11.002).
  • Borai, E. H.; Hamed, M. M.; Shahr El-Din, A. M. A New Method for Processing of Low-Grade Monazite Concentrates. J. Geol. Soc. India. 2017, 89, 600–604. DOI: 10.1007/s12594-017-0649-0.
  • Borai, E. H.; El Afifi, E. M.; Shahr El-Din, A. M. Selective Elimination of Natural Radionuclides during the Processing of High Grade Monazite Concentrates by Caustic Conversion Method. Korean J. Chem. Eng. 2017, 34, 1091–1099. DOI: 10.1007/s11814-016-0350-9.
  • Shu, Q.; Khayambashi, A.; Wang, X.; Wei, Y. Studies on Adsorption of Rare Earth Elements from Nitric Acid Solution with Macroporous Silica-Based Bis(2-Ethylhexyl)Phosphoric Acid Impregnated Polymeric Adsorbent. Adsorp. Sci. & Technol. 2018, 36, 1049–1065. DOI: 10.1177/0263617417748112.
  • Moldoveanu, G. A.; Papangelakis, V. G. Recovery of Rare Earth Elements Adsorbed on Clay Minerals: I. Desorption Mechanism. Hydrometallurgy 2012, 117–118, 71–78. DOI: 10.1016/j.hydromet.2012.02.007.
  • Krishnan, R.; Asundi, M. K. Zirconium Alloys in Nuclear Technology. Proc. Indian Acad. Sci. 1981, 4, 141–156.
  • Remya Devi, P. S.; Joshi, S.; Verma, R.; Reddy, A. V. R.; Lali, A. M.; Gantayet, L. M. Ion-Exchange Separation of 60Co and 125Sb from Zirconium for Radioactive Waste Management. Nucl. Technol. 2010, 171, 220–227. DOI: 10.13182/NT10-A10784.
  • Gantayet, L. M.; Venkatramani, N.; Verma, R.; Sudersanan, M.; Sahoo, K. C.; Venugopal, V.; Manohar, S. B. Decontamination and Recycle of Zirconium of Replaced Pressure Tubes and Spent Fuel for PHWRs: A Conceptual Scheme. ZIRC-2002, BARC, Mumbai, India, pp. 147–152. Contaminated zirconium can be recycled as well.
  • Çolak, A. B. Experimental Study for Thermal Conductivity of Water-Based Zirconium Oxide Nanofluid: Developing Optimal Artificial Neural Network and Proposing New Correlation. Int. J. Energy Res. 2020, 1–19. DOI: 10.1002/er.5988.
  • Vijay, M. T.; Kumar, P.; Jaison, P. H. 2018. HPLC Studies for the Separation of Lanthanides in Zirconium Matrix. Biennial Symposium on Emerging Trends in Separation Science and Technology, Goa (India), May 23–26, 2018.
  • El Afifi, E. M.; Awwad, N. S.; El-Sayed, A. A.; Aly, H. F. Separation and Preconcentration of La from Monazite, Followed by Determination Using Nondestructive γ-Ray Spectrometry. Radiochemistry 2012, 54, 264–268. DOI: 10.1134/S1066362212030083.
  • Borai, E. H.; Shahr El-Din, A. M.; El Afifi, E. M.; Aglan, R. F.; Abo-Aly, M. M. Subsequent Separation and Selective Extraction of Thorium (IV), Iron (III), Zirconium (IV) and Cerium (III) from Aqueous Sulfate Medium. S. Afr. J. Chem. 2016, 69, 148–156. DOI: 10.17159/0379-4350/2016/v69a18.
  • Braun T, Ghersini G (Eds.). Extraction Chromatography; Elsevier: Amsterdam, 1975. (ISBN-10: 0444998780, ISBN-13:9780080858029).
  • Nabi, S.; Alim, A.; Islam, A.; Amjad, A. Column Chromatographic Separation of Metal Ions on 1-(2-pyridylazo)-2-napthol Modified Amberlite IR-120 resin. J. Sep. Sci. 2005, 28, 2463–2467. DOI: 10.1002/jssc.200500170.
  • Hamed, M. M.; Shahr El-Din, A. M.; Abdel-Galil, E. A. Nanocomposite of Polyaniline Functionalized Tafla: Synthesis, Characterization, and Application as a Novel Sorbent for Selective Removal of Fe(III). J. Radioanal. Nucl. Chem. 2019, 322, 663–676. DOI: 10.1007/s10967-019-06733-0.
  • Naushad, M.; Alothman, Z. A.; Sharma, G.; Inamuddin. Kinetics, Isotherm and Thermodynamic Investigations for the Adsorption of Co(II) Ion onto Crystal Violet Modified Amberlite IR-120 Resin. Ionics. 2015, 21, 1453–1459. DOI: 10.1007/s11581-014-1292-z.
  • Kocaoba, S. Comparison of Amberlite IR 120 and Dolomite’s Performances for Removal of Heavy Metals. J. Hazard. Mater. 2007, 147, 488–496. DOI: 10.1016/j.jhazmat.2007.01.037.
  • Lai, M.; Goya, H. A. 1967. Concentration of Mixed Fission Products from Sea Water by Chelex 100, USNRDL-TR-6M28 10 September 1967, U.S. Naval Radiological Defense Laboratory. San Francisco, CA.
  • El-Sewafy, F. H. Sorption and Separation of Some Elements of Nuclear Importance Using Chelex-lO0. J. Radioanal. Nucl. Chem. 1997, 222, 55–59. DOI: 10.1007/BF02034247
  • Marczenko, Z.; Balcerzak, M. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, 1st ed.; Elsevier Science B.V: Amsterdam, 2000; pp. 341–474.
  • Khalil, M.; El-Aryan, Y. F.; El Afifi, E. M. Sorption Performance of Light Rare Earth Elements Using Zirconium Titanate and Polyacrylonitrile Zirconium Titanate Ion Exchangers. Part. Sci. Technol. 2018, 36, 618–627. DOI: 10.1080/02726351.2017.1287141.
  • Dakroury, G. A.; Allan, K. F.; Attallah, M. F.; El Afifi, E. M. Sorption and Separation Performance of Certain Natural Radionuclides of Environmental Interest Using Silica/Olive Pomace Nanocomposites. J. Radioanal. Nucl. Chem. 2020, 325, 625–639. Published online 06 June 2020. DOI: 10.1007/s10967-020-07237-y.
  • Çolak, A. B. An Experimental Study on the Comparative Analysis of the Effect of the Number of Data on the Error Rates of Artificial Neural Networks. Int. J. Energy Res. 2021, 45, 478–423. DOI: 10.1002/er.5680.
  • El Afifi, E. M.; Borai, E. H. Performance Characteristics of Sequential Separation and Quantification of Lead-210 and Polonium-210 by Ion Exchange Chromatography and Nuclear Spectrometric Measurements. J. Environ. Qual. 2006, 35, 568–574. DOI: 10.2134/jeq2005.0223.
  • Wang, M.; Zagorodny, A.; Muhammed, M. HYDRA-MEDUSA Software: Hydrochemical Equilibrium Constant Database, IgnasiPuigdomened Inorganic Chemistry; Royal Institute of Technology: Stockholm, 2015.
  • Schmuckler, G. Chelating Resins—Their Analytical Properties and Applications. Talanta 1965, 12, 281–290. DOI: 10.1016/0039-9140(65)80249-1.
  • El-Sourougy, M. R.; El-Dessouky, M. I.; Aly, H. F. Assessment of Some Ion Exchangers for the Treatment of Low-Level Radioactive Liquid Waste Solutions. Arab J. Nucl. Sci. Appl. 1994, 27, 75–88.
  • Gode, F.; Pehlivan, E. A Comparative Study of Two Chelation Ion-Exchange Resins for the Removal of Chromium (III) from Aqueous Solutions. J. Hazard. Mater. 2003, B100, 231–243. DOI: 10.1016/S0304-3894(03)00110-9).
  • Lide, D. R. (ed.), CRC Handbook of Chemistry and Physics. Internet Version 2005, http://www.hbcpnetbase.com.; CRC Press: Boca Raton, FL, 2005; pp. 1277–1287.
  • Shannon, D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A. 1976, 32, 751–767. DOI: 10.1107/S0567739476001551.
  • Persson, I. Hydrated Metal Ions in Aqueous Solution: How Regular Are Their Structures? Pure Appl. Chem. 2010, 82, 1901–1917. DOI: 10.1351/PAC-CON-09-10-22.
  • Korkisch, J. Modern Methods for the Separation of Rarer Metal Ions; Pergamon Press: Oxford, 1969.
  • El-Sweify, F. H.; Abdel-Fattah, A. A.; Elkouly, S. H.; Aly, S. M. Solvent Extraction and Ion Exchange Studies on the Separation of Ce, Nd, Gd, Tm and Zr. Arab J. Nucl. Sci. Appl. 2013, 46, 43–52.
  • Hecht, F. Grundzüge der Radio-und Reactorchemie; AkademischeVerlagsgesellschaft: Frankfurt am Main; 1968.
  • Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed; Butter Worth Heineman: Oxford; 1997.
  • Seelmann–Eggebert, W.; Pfennig, P.; Münzel, H.; Klewe-Nebenius, H. Chart of Nuclides; Kernforchungszentrum Karlsruhe (KfK): Germany; 1981.
  • Attallah, M. F.; Rizk, S. E.; El Afifi, E. M. Efficient Removal of Iodine and Chromium as Anionic Species from Radioactive Liquid Waste Using Prepared Iron Oxide Nanofibers. J. Radioanal. Nucl. Chem. 2018, 317, 933–945. DOI: 10.1007/s10967-018-5938-6.
  • El-Saied, H. A.; Shahr El-Din, A. M.; Masry, B. M.; Ibrahim, A. M. A Promising Superabsorbent Nanocomposite Based on Grafting Biopolymer/Nanomagnetite for Capture of 134Cs, 85Sr and 60Co Radionuclides. J. Polym. Environ. 2020, 28, 1749–1765. DOI: 10.1007/s10924-020-01720-z.
  • Saha, P.; Chowdhury, S. Insight into adsorption thermodynamics, Ch 16. In: Tadashi, M. (ed.), Thermodynamics, pp. 349–364. ISBN: 978-953-307-544-0; InTech; 2011. http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics.
  • Attallah, M. F.; Hilal, M. A.; Moussa, S. I. Quantification of Some Elements of Nuclear and Industrial Interest from Zircon Mineral Using Neutron Activation Analysis and Passive Gamma-Ray Spectroscopy. Appl. Radiat. Isot. 2017, 128, 224–230. DOI: 10.1016/j.apradiso.2017.07.018.
  • Ozturk, S. Use of Solid Phase Extraction for Preconcentration of Rare Earth Elements: Provenance Studies in Catalhoyuk Obsidians. M. Sci. Thesis, The Middle East Technical University, 2003.
  • Wang, X.; Guo, H.; Wang, F.; Tan, T.; Wu, H.; Zhang, H. Halloysite Nanotubes: An Eco‐Friendly Adsorbent for the Adsorption of Th(IV)/U(VI) Ions from Aqueous Solution. J. Radioanal. Nucl. Chem. 2020, 324, 1151–1165. DOI: 10.1007/s10967-020-07142-4.
  • Speight, J. G. Lang’s Handbook of Chemistry, 16th ed. McGraw-Hill Companies Inc.: New York, ISSN: 0748-4585; 2005, pp. 155–166.
  • Mokhtari, M.; Keshtkar, A. R. Removal of Th(IV), Ni(II) and Fe(II) from Aqueous Solutions by a Novel PAN–TiO2 Nanofiber Adsorbent Modified with Aminopropyltriethoxy-Silane. Res. Chem. Intermed. 2016, 42, 4055–4076. DOI: 10.1007/s11164-015-2258-0.
  • Talebi, M.; Abbasizadeh, S.; Keshtkar, A. R. Evaluation of Single and Simultaneous Thorium and Uranium Sorption from Water Systems by an Electrospun PVA/SA/PEO/HZSM5 Nanofiber. Process. Saf. Environ. Prot. 2017, 109, 340–356. DOI: 10.1016/j.psep.2017.04.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.