197
Views
3
CrossRef citations to date
0
Altmetric
Articles

Copper electrode for the removal of chromium from dyestuff industries effluent by electrocoagulation: kinetic study and operating cost

, &
Pages 1652-1662 | Received 11 Sep 2020, Accepted 05 Jan 2021, Published online: 03 Feb 2021

References

  • Wang, Z.; Shen, Q.; Xue, J.; Guan, R.; Li, Q.; Liu, X.; Jia, H.; Wu, Y. 3D Hierarchically Porous NiO/NF Electrode for the Removal of Chromium(VI) from Wastewater by Electrocoagulation. Chem. Eng. J. 2020, 402, 126151. [Online early access]. DOI: 10.1016/j.cej.2020.126151.
  • Ali Maitlo, H.; Kim, K. H.; Yang Park, J.; Hwan Kim, J. Removal Mechanism for Chromium (VI) in Groundwater with Cost-Effective Iron-Air Fuel Cell Electrocoagulation. Sep. Purif. Technol. 2019, DOI: 10.1016/j.seppur.2018.12.058.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • El-Taweel, Y. A.; Nassef, E. M.; Elkheriany, I.; Sayed, D. Removal of Cr (VI) Ions from Waste Water by Electrocoagulation Using Iron Electrode. Egypt. J. Pet. 2015, 24, 183–192. DOI: 10.1016/j.ejpe.2015.05.011.
  • Al-Qodah, Z.; Al-Shannag, M. Heavy Metal Ions Removal from Wastewater Using Electrocoagulation Processes: A Comprehensive Review. Sep. Sci. Technol. 2017, 6395, 1–28. [Internet] DOI: 10.1080/01496395.2017.1373677.
  • Pollution, C.; Board, C. Pollution Control Acts, Rules and Notifications Issued Thereunder. 1992.
  • Barbosa, R. F. S.; Souza, A. G.; Maltez, H. F.; Rosa, D. S. Chromium Removal from Contaminated Wastewaters Using Biodegradable Membranes Containing Cellulose Nanostructures. Chem. Eng. J. 2020, 395, 125055. DOI: 10.1016/j.cej.2020.125055.
  • Noah, N. F. M.; Sulaiman, R. N. R.; Othman, N.; Jusoh, N.; Rosly, M. B. Extractive Continuous Extractor for Chromium Recovery: Chromium (VI) Reduction to Chromium (III) in Sustainable Emulsion Liquid Membrane Process. J. Clean. Prod. 2020, 247, 119167. DOI: 10.1016/j.jclepro.2019.119167.
  • Kumar, P.; Chauhan, M. S. Adsorption of Chromium (VI) from the Synthetic Aqueous Solution Using Chemically Modified Dried Water Hyacinth Roots. J. Environ. Chem. Eng. 2019, 7–103218. DOI: 10.1016/j.jece.2019.103218.
  • Nigri, E. M.; Santos, A. L. A.; Rocha, S. D. F. Removal of Organic Compounds, Calcium and Strontium from Petroleum Industry Effluent by Simultaneous Electrocoagulation and Adsorption. J. Water. Process. Eng. 2020, 37, 101442. DOI: 10.1016/j.jwpe.2020.101442.
  • Chen, G.; Liu, H. Photochemical Removal of Hexavalent Chromium and Nitrate from Ion-Exchange Brine Waste Using Carbon-Centered Radicals. Chem. Eng. J. 2020, 396, 125136. DOI: 10.1016/j.cej.2020.125136.
  • Korak, J. A.; Huggins, R.; Arias-Paic, M. Regeneration of Pilot-Scale Ion Exchange Columns for Hexavalent Chromium Removal. Water. Res. 2017, DOI: 10.1016/j.watres.2017.03.018.
  • Wang, H.; Song, X.; Zhang, H.; Tan, P.; Kong, F. Removal of Hexavalent Chromium in Dual-Chamber Microbial Fuel Cells Separated by Different Ion Exchange Membranes. J. Hazard. Mater. 2020, 384, 121459. DOI: 10.1016/j.jhazmat.2019.121459.
  • Hsu, H. T.; Chen, S. S.; Chen, Y. S. Removal of Chromium (VI) and Naphthalenesulfonate from Textile Wastewater by Photocatalysis Combining Ionic Exchange Membrane Processes. Sep. Purif. Technol. 2011, 80, 663–669. DOI: 10.1016/j.seppur.2011.06.032.
  • Golbaz, S.; Jafari, A. J.; Rafiee, M.; Kalantary, R. R. Separate and Simultaneous Removal of Phenol, Chromium, and Cyanide from Aqueous Solution by Coagulation/Precipitation: Mechanisms and Theory. Chem. Eng. J. 2014, 253, 251–257. DOI: 10.1016/j.cej.2014.05.074.
  • Yan, K.; Liu, Z.; Li, Z.; Yue, R.; Guo, F.; Xu, Z. Selective Separation of Chromium from Sulphuric Acid Leaching Solutions of Mixed Electroplating Sludge Using Phosphate Precipitation. Hydrometallurgy 2019, 186, 42–49. DOI: 10.1016/j.hydromet.2019.03.013.
  • Mamais, D.; Noutsopoulos, C.; Kavallari, I.; Nyktari, E.; Kaldis, A.; Panousi, E.; Nikitopoulos, G.; Antoniou, K.; Nasioka, M. Biological Groundwater Treatment for Chromium Removal at Low Hexavalent Chromium Concentrations. Chemosphere 2016, 152, 238–244. DOI: 10.1016/j.chemosphere.2016.02.124.
  • Ahmed, E.; Abdulla, H. M.; Mohamed, A. H.; El-Bassuony, A. D. Remediation and Recycling of Chromium from Tannery Wastewater Using Combined Chemical–Biological Treatment System. Process. Saf. Environ. Prot. 2016, 104, 1–10. DOI: 10.1016/j.psep.2016.08.004.
  • Patel, S. R.; Parikh, S. P. Statistical Optimizing of Electrocoagulation Process for the Removal of Cr (VI) Using Response Surface Methodology and Kinetic Study. Arab. J. Chem. 2020, DOI: 10.1016/j.arabjc.2020.07.009.
  • Zaroual, Z.; Chaair, H.; Essadki, A. E.; Ass, K.; Azzi, M. Optimizing the Removal of Trivalent Chromium by Electrocoagulation Using Experimental Design. Chem. Eng. J. 2009, 148, 488–495. DOI: 10.1016/j.cej.2008.09.040.
  • Zewail, T. M.; Yousef, N. S. Chromium Ions (Cr6+ & Cr3+) Removal from Synthetic Wastewater by Electrocoagulation Using Vertical Expanded Fe Anode. J. Electroanal. Chem. 2014, 735, 123–128. DOI: 10.1016/j.jelechem.2014.09.002.
  • Deng, X.; Chen, Y.; Wen, J.; Xu, Y.; Zhu, J.; Bian, Z. Polyaniline-TiO2 Composite Photocatalysts for Light-Driven Hexavalent Chromium Ions Reduction. Sci. Bull. 2019, DOI: 10.1016/j.scib.2019.10.020.
  • Das, D.; Nandi, B. K. Removal of Fe (II) Ions from Drinking Water Using Electrocoagulation (EC) Process: Parametric Optimization and Kinetic Study. J. Environ. Chem. Eng. 2019, 7, 103116. DOI: 10.1016/j.jece.2019.103116.
  • Hussin, F.; Abnisa, F.; Issabayeva, G.; Aroua, M. K. Removal of Lead by Solar-Photovoltaic Electrocoagulation Using Novel Perforated Zinc Electrode. J. Clean. Prod. 2017, 147, 206–216. DOI: 10.1016/j.jclepro.2017.01.096.
  • Maitlo, H. A.; Kim, J. H.; Kim, K.; Park, J. Y.; Khan, A. Metal-Air Fuel Cell Electrocoagulation Techniques for the Treatment of Arsenic in Water. J. Clean. Prod. 2018, DOI: 10.1016/j.jclepro.2018.09.232.
  • Jose, S.; Mishra, L.; Debnath, S.; Pal, S.; Munda, P. K.; Basu, G. Improvement of Water Quality of Remnant from Chemical Retting of Coconut Fibre through Electrocoagulation and Activated Carbon Treatment. J. Clean. Prod. 2019, 210, 630–637. DOI: 10.1016/j.jclepro.2018.11.011.
  • Gilhotra, V.; Das, L.; Sharma, A.; Kang, T. S.; Singh, P.; Dhuria, R. S.; Bhatti, M. S. Electrocoagulation Technology for High Strength Arsenic Wastewater: Process Optimization and Mechanistic Study. J. Clean. Prod. 2018, 198, 693–703. DOI: 10.1016/j.jclepro.2018.07.023.
  • De Mello Ferreira, A.; Marchesiello, M.; Thivel, P. X. Removal of Copper, Zinc and Nickel Present in Natural Water Containing Ca2 + and HCO3-Ions by Electrocoagulation. Sep. Purif. Technol. 2013, 107, 109–117. DOI: 10.1016/j.seppur.2013.01.016.
  • Akbal, F.; Camcı, S. Copper, Chromium and Nickel Removal from Metal Plating Wastewater by Electrocoagulation. Desalination 2011, 269, 214–222. DOI: 10.1016/j.desal.2010.11.001.
  • Xu, L.; Cao, G.; Xu, X.; Liu, S.; Duan, Z.; He, C.; Wang, Y.; Huang, Q. Simultaneous Removal of Cadmium, Zinc and Manganese Using Electrocoagulation: Influence of Operating Parameters and Electrolyte Nature. J. Environ. Manage. 2017, 204, 394–403. DOI: 10.1016/j.jenvman.2017.09.020.
  • Huang, C. H.; Chen, L.; Yang, C. L. Effect of Anions on Electrochemical Coagulation for Cadmium Removal. Sep. Purif. Technol. 2009, 65, 137–146. DOI: 10.1016/j.seppur.2008.10.029.
  • Ezechi, E. H.; Isa, M. H.; Kutty, S. R. M.; Yaqub, A. Boron Removal from Produced Water Using Electrocoagulation. Process. Saf. Environ. Prot. 2014, 92, 509–514. DOI: 10.1016/j.psep.2014.08.003.
  • Doggaz, A.; Attour, A.; Le Page Mostefa, M.; Tlili, M.; Lapicque, F. Iron Removal from Waters by Electrocoagulation: Investigations of the Various Physicochemical Phenomena Involved. Sep. Purif. Technol. 2018, 203, 217–225. DOI: 10.1016/j.seppur.2018.04.045.
  • Arroyo, M. G.; Pérez-Herranz, V.; Montañés, M. T.; García-Antón, J.; Guiñón, J. L. Effect of pH and Chloride Concentration on the Removal of Hexavalent Chromium in a Batch Electrocoagulation Reactor. J. Hazard. Mater. 2009, 169, 1127–1133. DOI: 10.1016/j.jhazmat.2009.04.089.
  • Prajapati, A. K.; Chaudhari, P. K.; Pal, D.; Chandrakar, A.; Choudhary, R. Electrocoagulation Treatment of Rice Grain Based Distillery Effluent Using Copper Electrode. J. Water Process. Eng. 2016, 11, 1–7. DOI: 10.1016/j.jwpe.2016.03.008.
  • Al-Qodah, Z.; Al-Shannag, M.; Bani-Melhem, K.; Assirey, E.; Yahya, M. A.; Al-Shawabkeh, A. Free Radical-Assisted Electrocoagulation Processes for Wastewater Treatment. Environ. Chem. Lett. 2018, 16, 695–714. DOI: 10.1007/s10311-018-0711-1.
  • Ümmü, E.; Akarsu, C.; Özay, Y. Enhancing Treatability of Tannery Wastewater by Integrated Process of Electrocoagulation and Fungal via Using RSM in an Economic Perspective. J. Process Biochem. 2019, 84, 124–133. DOI: 10.1016/j.procbio.2019.06.016.
  • Kim, T.; Kim, T. K.; Zoh, K. D. Removal Mechanism of Heavy Metal (Cu, Ni, Zn, and Cr) in the Presence of Cyanide during Electrocoagulation Using Fe and Al Electrodes. J. Water Process Eng. 2020, 33, 101109. DOI: 10.1016/j.jwpe.2019.101109.
  • Mahmad, M. K. N.; Rozainy, M.; Abustan, I.; Baharun, N. Electrocoagulation Process by Using Aluminium and Stainless Steel Electrodes to Treat Total Chromium, Colour and Turbidity. Procedia. Chem. 2016, 19, 681–686. DOI: 10.1016/j.proche.2016.03.070.
  • Vasudevan, S.; Lakshmi, J.; Sozhan, G. Studies on the Al-Zn-in-Alloy as Anode Material for the Removal of Chromium from Drinking Water in Electrocoagulation Process. Desalination 2011, 275, 260–268. DOI: 10.1016/j.desal.2011.03.011.
  • Espinoza-Quiñones, F. R.; Fornari, M. M. T.; Módenes, A. N.; Palácio, S. M.; da Silva, F. G.; Szymanski, N.; Kroumov, A. D.; Trigueros, D. E. G. Pollutant Removal from Tannery Effluent by Electrocoagulation. Chem. Eng. J. 2009, 151, 59–65. DOI: 10.1016/j.cej.2009.01.043.
  • Sahu, O.; Mazumdar, B.; Chaudhari, P. K. Treatment of Wastewater by Electrocoagulation: A Review. Environ. Sci. Pollut. Res. Int. 2014, 21, 2397–2413. DOI: 10.1007/s11356-013-2208-6.
  • Nandi, B. K.; Patel, S. Effects of Operational Parameters on the Removal of Brilliant Green Dye from Aqueous Solutions by Electrocoagulation. Arab. J. Chem. 2017, 10, S2961–S2968. DOI: 10.1016/j.arabjc.2013.11.032.
  • Sharma, D.; Chaudhari, P. K.; Prajapati, A. K. Removal of Chromium (VI) and Lead from Electroplating Effluent Using Electrocoagulation. Sep. Sci. Technol. 2019, 1–11. DOI: 10.1080/01496395.2018.1563157.
  • Zhou, R.; Liu, F.; Wei, N.; Yang, C.; Yang, J.; Wu, Y.; Li, Y.; Xu, K.; Chen, X.; Zhang, C. Comparison of Cr (VI) Removal by Direct and Pulse Current Electrocoagulation: Implications for Energy Consumption Optimization, Sludge Reduction and Floc Magnetism. J. Water Process. Eng. 2020, 37, 101387. DOI: 10.1016/j.jwpe.2020.101387.
  • Das, D.; Nandi, B. K. Arsenic Removal from Tap Water by Electrocoagulation: Investigation of Process Parameters, Kinetic Analysis, and Operating Cost. J. Dispers. Sci. Technol. 2019, 1–10. DOI: 10.1080/01932691.2019.1681280.
  • Aber, S.; Amani-Ghadim, A. R.; Mirzajani, V. Removal of Cr (VI) from Polluted Solutions by Electrocoagulation: Modeling of Experimental Results Using Artificial Neural Network. J. Hazard. Mater. 2009, 171, 484–490. DOI: 10.1016/j.jhazmat.2009.06.025.
  • Mouedhen, G.; Feki, M. D.; Petris-Wery, M.; Ayedi, H. F. Electrochemical Removal of Cr (VI) from Aqueous Media Using Iron and Aluminum as Electrode Materials: Towards a Better Understanding of the Involved Phenomena. J. Hazard. Mater. 2009, 168, 983–991. DOI: 10.1016/j.jhazmat.2009.02.117.
  • Vasudevan, S.; Lakshmi, J.; Sozhan, G. Simultaneous Removal of Co, Cu, and Cr from Water by Electrocoagulation. Toxicol. Environ. Chem. 2012, 94, 1930–1940. DOI: 10.1080/02772248.2012.742898.
  • Zini, L. P.; Longhi, M.; Jonko, E.; Giovanela, M. Treatment of Automotive Industry Wastewater by Electrocoagulation Using Commercial Aluminum Electrodes. Process Saf. Environ. Prot. 2020, 142, 272–284. DOI: 10.1016/j.psep.2020.06.029.
  • Oden, M. K.; Sari-Erkan, H. Treatment of Metal Plating Wastewater Using Iron Electrode by Electrocoagulation Process: Optimization and Process Performance. Process Saf. Environ. Prot. 2018, 119, 207–217. DOI: 10.1016/j.psep.2018.08.001.
  • Aoudj, S.; Khelifa, A.; Drouiche, N.; Belkada, R.; Miroud, D. Simultaneous Removal of Chromium (VI) and Fluoride by Electrocoagulation–Electroflotation: Application of a Hybrid Fe–Al Anode. Chem. Eng. J. 2015, 267, 153–162. DOI: 10.1016/j.cej.2014.12.081.
  • Tezcan Un, U.; Onpeker, S. E.; Ozel, E. The Treatment of Chromium Containing Wastewater Using Electrocoagulation and the Production of Ceramic Pigments from the resulting sludge. J. Environ. Manage. 2017, 200, 196–203. DOI: 10.1016/j.jenvman.2017.05.075.
  • Smoliński, A.; Karwot, J.; Bondaruk, J.; Bąk, A. The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits. Materials (Basel) 2019, 12, 2417–2419. DOI: 10.3390/ma12152417.
  • Wiebusch, B.; Seyfried, C. F. Utilization of Sewage Sludge Ashes in the Brick and Tile Industry. Water Sci. Technol. 1997, 36, 251–258. DOI: 10.1016/S0273-1223(97)00688-4.
  • Tay, J. H.; Show, K. Y. Municipal Wastewater Sludge as Cementitious and Blended Cement Materials. Cem. Concr. Compos. 1994, 16, 39–48. DOI: 10.1016/0958-9465(94)90029-9.
  • Lamastra, L.; Suciu, N. A.; Trevisan, M. Sewage Sludge for Sustainable Agriculture: Contaminants’ Contents and Potential Use as Fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 1–6. DOI: 10.1186/s40538-018-0122-3.
  • Rafati, L.; Mahvi, A. H.; Asgari, A. R.; Hosseini, S. S. Removal of Chromium (VI) from Aqueous Solutions Using Lewatit fo36 Nano Ion Exchange Resin. Int. J. Environ. Sci. Technol. 2010, 7, 147–156. DOI: 10.1007/BF03326126.
  • Kakavandi, B.; Kalantary, R. R.; Farzadkia, M.; Mahvi, A. H.; Esrafili, A.; Azari, A. Enhanced Chromium (VI) Removal Using Activated Carbon Modified by Zero Valent Iron and Silver Bimetallic Nanoparticles. J. Environ. Heal. Sci. Eng. 2014, 12, 1–10. DOI: 10.1186/s40201-014-0115-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.