247
Views
2
CrossRef citations to date
0
Altmetric
Articles

Integrated remediation approach for metal polluted soils using plants, nanomaterials and root-associated bacteria

ORCID Icon, ORCID Icon &
Pages 1674-1688 | Received 31 Aug 2020, Accepted 05 Jan 2021, Published online: 01 Feb 2021

References

  • Abadin, H.; Taylor, J.; Buser, M. C.; Scinicariello, F.; Przybyla, J.; Klotzbach, J. M.; Diamond, G. L.; Chappell, L. L.; McIlroy, L. A. Toxicological Profile for Lead: Draft for Public Comment. 2019.
  • Shu, X.; Yin, L.; Zhang, Q.; Wang, W. Effect of Pb Toxicity on Leaf Growth, Antioxidant Enzyme Activities, and Photosynthesis in Cuttings and Seedlings of Jatropha Curcas L. Environ. Sci. Pollut. Res. Int. 2012, 19, 893–902. DOI: 10.1007/s11356-011-0625-y.
  • Rascio, N.; Navari-Izzo, F. Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? Plant Sci. 2011, 180, 169–181. DOI: 10.1016/j.plantsci.2010.08.016.
  • Wan, X.; Lei, M.; Chen, T. Cost–Benefit Calculation of Phytoremediation Technology for Heavy-Metal-Contaminated Soil. Sci. Total Environ. 2016, 563-564, 796–802. DOI: 10.1016/j.scitotenv.2015.12.080.
  • Ashraf, S.; Ali, Q.; Zahir, Z. A.; Ashraf, S.; Asghar, H. N. Phytoremediation: Environmentally Sustainable Way for Reclamation of Heavy Metal Polluted Soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. DOI: 10.1016/j.ecoenv.2019.02.068.
  • Huang, C.; Lai, C.; Xu, P.; Zeng, G.; Huang, D.; Zhang, J.; Zhang, C.; Cheng, M.; Wan, J.; Wang, R. Lead-Induced Oxidative Stress and Antioxidant Response Provide Insight into the Tolerance of Phanerochaete chrysosporium to Lead Exposure. Chemosphere 2017, 187, 70–77. DOI: 10.1016/j.chemosphere.2017.08.104.
  • Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N. W.; Beesley, L. Efficiency of Green Waste Compost and Biochar Soil Amendments for Reducing Lead and Copper Mobility and Uptake to Ryegrass. J. Hazard. Mater. 2011, 191, 41–48. DOI: 10.1016/j.jhazmat.2011.04.025.
  • Saghi, A.; Rashed Mohassel, M. H.; Parsa, M.; Hammami, H. Phytoremediation of Lead-Contaminated Soil by Sinapis Arvensis and Rapistrum Rugosum. Int. J. Phytoremediation. 2016, 18, 387–392. DOI: 10.1080/15226514.2015.1109607.
  • Abdelkrim, S.; Jebara, S. H.; Saadani, O.; Abid, G.; Taamalli, W.; Zemni, H.; Mannai, K.; Louati, F.; Jebara, M. In Situ Effects of Lathyrus sativus- PGPR to Remediate and Restore Quality and Fertility of Pb and Cd Polluted Soils. Ecotoxicol. Environ. Saf. 2020, 192, 110260. DOI: 10.1016/j.ecoenv.2020.110260.
  • Mokarram-Kashtiban, S.; Hosseini, S. M.; Kouchaksaraei, M. T.; Younesi, H. The Impact of Nanoparticles Zero-Valent Iron (nZVI) and Rhizosphere Microorganisms on the Phytoremediation Ability of White Willow and Its Response. Environ. Sci. Pollut. Res. Int. 2019, 26, 10776–10789. DOI: 10.1007/s11356-019-04411-y.
  • Feng, N.-X.; Yu, J.; Zhao, H.-M.; Cheng, Y.-T.; Mo, C.-H.; Cai, Q.-Y.; Li, Y.-W.; Li, H.; Wong, M.-H. Efficient Phytoremediation of Organic Contaminants in Soils Using plant-endophyte partnerships. Sci. Total Environ. 2017, 583, 352–368. DOI: 10.1016/j.scitotenv.2017.01.075.
  • Ren, H.; Lv, C.; Fernández-García, V.; Huang, B.; Yao, J.; Ding, W. Biochar and PGPR Amendments Influence Soil Enzyme Activities and Nutrient Concentrations in a Eucalyptus Seedling Plantation. Biomass Convers. Biorefin. 2019, 1–10.
  • Sarfraz, R.; Hussain, A.; Sabir, A.; Fekih, I. B.; Ditta, A.; Xing, S. Role of Biochar and Plant Growth Promoting Rhizobacteria to Enhance Soil Carbon sequestration-a review. Environ. Monit. Assess. 2019, 191, 251. DOI: 10.1007/s10661-019-7400-9.
  • Figueiredo, M. d. V. B.; Seldin, L.; de Araujo, F. F.; Mariano, R. d. L. R. Plant Growth Promoting Rhizobacteria: fundamentals and Applications. In: Plant Growth and Health Promoting Bacteria; Maheshwari, D.K., Eds.; Springer: Berlin, 2010, pp. 21–43.
  • Akhtar, M. J.; Ullah, S.; Ahmad, I.; Rauf, A.; Nadeem, S. M.; Khan, M. Y.; Hussain, S.; Bulgariu, L. Nickel Phytoextraction through Bacterial Inoculation in Raphanus sativus. Chemosphere 2018, 190, 234–242. DOI: 10.1016/j.chemosphere.2017.09.136.
  • Utobo, E.; Tewari, L. Soil Enzymes as Bioindicators of Soil Ecosystem Status. Appl. Ecol. Environ. Res. 2015, 13, 147–169.
  • Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. DOI: 10.3389/fmicb.2018.01606.
  • Gao, J.; Xu, G.; Qian, H.; Liu, P.; Zhao, P.; Hu, Y. Effects of Nano-TiO2 on Photosynthetic Characteristics of Ulmus elongata Seedlings. Environ. Pollut. 2013, 176, 63–70. DOI: 10.1016/j.envpol.2013.01.027.
  • Hawthorne, J.; De la Torre Roche, R.; Xing, B.; Newman, L. A.; Ma, X.; Majumdar, S.; Gardea-Torresdey, J.; White, J. C. Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain. Environ. Sci. Technol. 2014, 48, 13102–13109. DOI: 10.1021/es503792f.
  • Chavan, S.; Sarangdhar, V.; Nadanathangam, V. Toxicological Effects of TiO2 Nanoparticles on Plant Growth Promoting Soil Bacteria. Emerg. Contam. 2020, 6, 87–92. DOI: 10.1016/j.emcon.2020.01.003.
  • Kuang, X.; Shao, J.; Peng, L.; Song, H.; Wei, X.; Luo, S.; Gu, J-d. Nano-TiO2 Enhances the Adsorption of Cd(II) on Biological Soil Crusts under Mildly Acidic Conditions. J. Contam. Hydrol. 2020, 229, 103583. DOI: 10.1016/j.jconhyd.2019.103583.
  • Gil-Díaz, M.; Pinilla, P.; Alonso, J.; Lobo, M. Viability of a Nanoremediation Process in Single or Multi-Metal(loid) Contaminated Soils. J. Hazard. Mater. 2017, 321, 812–819. DOI: 10.1016/j.jhazmat.2016.09.071.
  • Okkenhaug, G.; Grasshorn Gebhardt, K.-A.; Amstaetter, K.; Bue, H. L.; Herzel, H.; Mariussen, E.; Rossebø Almås, Å.; Cornelissen, G.; Breedveld, G. D.; Rasmussen, G.; Mulder, J. Antimony (Sb) and Lead (Pb) in Contaminated Shooting Range Soils: Sb and Pb Mobility and Immobilization by Iron Based Sorbents, a Field Study. J. Hazard. Mater. 2016, 307, 336–343. DOI: 10.1016/j.jhazmat.2016.01.005.
  • Kumpiene, J.; Ore, S.; Renella, G.; Mench, M.; Lagerkvist, A.; Maurice, C. Assessment of Zerovalent Iron for Stabilization of Chromium, Copper, and Arsenic in Soil. Environ. Pollut. 2006, 144, 62–69. DOI: 10.1016/j.envpol.2006.01.010.
  • Karthick, A.; Roy, B.; Chattopadhyay, P. Comparison of Zero-Valent Iron and Iron Oxide Nanoparticle Stabilized Alkyl Polyglucoside Phosphate Foams for Remediation of Diesel-Contaminated Soils. J. Environ. Manage. 2019, 240, 93–107. DOI: 10.1016/j.jenvman.2019.03.088.
  • Singh, J.; Lee, B.-K. Influence of nano-TiO2 Particles on the Bioaccumulation of Cd in Soybean Plants (Glycine max): A Possible Mechanism for the Removal of Cd from the Contaminated Soil. J. Environ. Manage. 2016, 170, 88–96. DOI: 10.1016/j.jenvman.2016.01.015.
  • Ma, X.; Gurung, A.; Deng, Y. Phytotoxicity and Uptake of Nanoscale Zero-Valent Iron (nZVI) by Two Plant Species. Sci Total Environ. 2013, 443, 844–849. DOI: 10.1016/j.scitotenv.2012.11.073.
  • Gómez-Godínez, L. J.; Fernandez-Valverde, S. L.; Romero, J. C. M.; Martínez-Romero, E. Metatranscriptomics and Nitrogen Fixation from the Rhizoplane of Maize Plantlets Inoculated with a Group of PGPRs. Syst. Appl. Microbiol. 2019, 42, 517–525. DOI: 10.1016/j.syapm.2019.05.003.
  • Khanna, K.; Jamwal, V. L.; Gandhi, S. G.; Ohri, P.; Bhardwaj, R. Metal Resistant PGPR Lowered Cd Uptake and Expression of Metal Transporter Genes with Improved Growth and Photosynthetic Pigments in Lycopersicon esculentum under Metal Toxicity. Sci. Rep. 2019, 9, 1–14.
  • Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017, 8, 597. DOI: 10.3389/fpls.2017.00597.
  • Bacilieri, F. S.; Pereira de Vasconcelos, A. C.; Quintao Lana, R. M.; Mageste, J. G.; Torres, J. L. R. Titanium (Ti) in Plant Nutrition-A Review. Aust. J. Crop Sci. 2017, 11, 382–386. DOI: 10.21475/ajcs.17.11.04.pne202.
  • Kelemen, G.; Keresztes, A.; Bacsy, E.; Feher, M.; Fodor, P.; Pais, I. Distribution and Intracellular Localization of Titanium in Plants after Titanium Treatment. Food Struct. 1993, 12, 8.
  • Papazoglou, E. G.; Fernando, A. L. Preliminary Studies on the Growth, Tolerance and Phytoremediation Ability of Sugarbeet (Beta vulgaris L.) Grown on Heavy Metal Contaminated Soil. Ind. Crops Prod. 2017, 107, 463–471. DOI: 10.1016/j.indcrop.2017.06.051.
  • Walkley, A.; Black, I. A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. DOI: 10.1097/00010694-193401000-00003.
  • Hou, J.; Liu, W.; Wang, B.; Wang, Q.; Luo, Y.; Franks, A. E. PGPR Enhanced Phytoremediation of Petroleum Contaminated Soil and Rhizosphere Microbial Community response. Chemosphere 2015, 138, 592–598. DOI: 10.1016/j.chemosphere.2015.07.025.
  • Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Chen, S.; Wang, R.; Xu, P.; Cheng, M.; Zhang, C.; Xue, W. Biochar Facilitated the Phytoremediation of Cadmium Contaminated Sediments: Metal Behavior, Plant Toxicity, and Microbial Activity. Sci. Total Environ. 2019, 666, 1126–1133. DOI: 10.1016/j.scitotenv.2019.02.215.
  • Oleszczuk, P.; Kołtowski, M. Effect of Co-Application of Nano-Zero Valent Iron and Biochar on the Total and Freely Dissolved Polycyclic Aromatic Hydrocarbons Removal and Toxicity of Contaminated Soils. Chemosphere 2017, 168, 1467–1476. DOI: 10.1016/j.chemosphere.2016.11.100.
  • Wannaz, E. D.; Carreras, H. A.; Abril, G. A.; Pignata, M. L. Maximum Values of Ni2+, Cu2+, Pb2+ and Zn2+ in the Biomonitor Tillandsia capillaris (Bromeliaceae): Relationship with Cell Membrane Damage. Environ. Exp. Bot. 2011, 74, 296–301. DOI: 10.1016/j.envexpbot.2011.06.012.
  • Fang, R. Application of Atomic Absorption Spectroscopy in Sanitary Test. Beijing University Press: Beijing, 1991.
  • Embrandiri, A.; Rupani, P.; Shahadat, M.; Singh, R.; Ismail, S.; Ibrahim, M.; Kadir, M. A. The Phytoextraction Potential of Selected Vegetable Plants from Soil Amended with Oil Palm Decanter Cake. Int. J. Recycl. Org. Waste Agric. 2017, 6, 37–45. DOI: 10.1007/s40093-016-0150-6.
  • Wellburn, R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. DOI: 10.1016/S0176-1617(11)81192-2.
  • Arnon, D. I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. DOI: 10.1104/pp.24.1.1.
  • Sabeti, M.; Tahmasebi, P.; Ghehsareh Ardestani, E.; Nikookhah, F. Effect of Plant Growth Promoting Rhizobacteria (PGPR) on the Seed Germination, Seedling Growth and Photosynthetic Pigments of Astragalus Caragana under Drought Stress. J. Rangeland Sci. 2019, 9, 364–377.
  • Hossain, M. M.; Das, K. C.; Yesmin, S.; Shahriar, S. Effect of Plant Growth Promoting Rhizobacteria (PGPR) in Seed Germination and Root-Shoot Development of Chickpea (Cicer arietinum L.) under Different Salinity Condition. Res. Agric. Livest. Fish. 2016, 3, 105–113. DOI: 10.3329/ralf.v3i1.27864.
  • Xiao, A.; Li, Z.; Li, W. C.; Ye, Z. The Effect of Plant Growth-Promoting Rhizobacteria (PGPR) on Arsenic Accumulation and the Growth of Rice Plants (Oryza sativa L.). Chemosphere 2020, 242, 125136. DOI: 10.1016/j.chemosphere.2019.125136.
  • Du, W.; Sun, Y.; Ji, R.; Zhu, J.; Wu, J.; Guo, H. TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. J. Environ. Monit. 2011, 13, 822–828. DOI: 10.1039/c0em00611d.
  • Yoon, H.; Kang, Y.-G.; Chang, Y.-S.; Kim, J.-H. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. Nanomaterials 2019, 9, 1543. DOI: 10.3390/nano9111543.
  • Bumbudsanpharoke, N.; Choi, J.; Ko, S. Applications of Nanomaterials in Food Packaging. J. Nanosci. Nanotechnol. 2015, 15, 6357–6372. DOI: 10.1166/jnn.2015.10847.
  • Abdel-Aziz, M. S.; Shaheen, M. S.; El-Nekeety, A. A.; Abdel-Wahhab, M. A. Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium Murale Leaf Extract. J. Saudi Chem. Soc. 2014, 18, 356–363. DOI: 10.1016/j.jscs.2013.09.011.
  • Nawaz, S.; Bano, A. Effects of PGPR (Pseudomonas sp.) and Ag-Nanoparticles on Enzymatic Activity and Physiology of Cucumber. FNA. 2020, 11, 124–136. DOI: 10.2174/2212798410666190716162340.
  • Chen, Z.-J.; Tian, Y.-H.; Zhang, Y.; Song, B.-R.; Li, H.-C.; Chen, Z.-H. Effects of Root Organic Exudates on Rhizosphere Microbes and Nutrient Removal in the Constructed Wetlands. Ecol. Eng. 2016, 92, 243–250. DOI: 10.1016/j.ecoleng.2016.04.001.
  • Abdel Latef, A. A. H.; Srivastava, A. K.; El, ‐Sadek, M. S. A.; Kordrostami, M.; Tran, L. S. P. Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions. Land Degrad. Dev. 2018, 29, 1065–1073. DOI: 10.1002/ldr.2780.
  • Kleiber, T.; Markiewicz, B. Application of “Tytanit” in Greenhouse Tomato Growing. Acta Sci. Pol. Hortorum Cultus 2013, 12, 117–126.
  • Huang, R.; Dong, M.; Mao, P.; Zhuang, P.; Paz-Ferreiro, J.; Li, Y.; Li, Y.; Hu, X.; Netherway, P.; Li, Z. Evaluation of Phytoremediation Potential of Five Cd (Hyper) Accumulators in Two Cd Contaminated Soils. Sci. Total Environ. 2020, 721, 137581. DOI: 10.1016/j.scitotenv.2020.137581.
  • Khan, N.; Bano, A. Role of Plant Growth Promoting Rhizobacteria and Ag-Nano Particle in the Bioremediation of Heavy Metals and Maize Growth under Municipal Wastewater Irrigation. Int. J. Phytoremediation. 2016, 18, 211–221. DOI: 10.1080/15226514.2015.1064352.
  • Bhargava, A.; Carmona, F. F.; Bhargava, M.; Srivastava, S. Approaches for Enhanced Phytoextraction of Heavy Metals. J. Environ. Manage. 2012, 105, 103–112. DOI: 10.1016/j.jenvman.2012.04.002.
  • Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale Zero-Valent Iron Coated with Rhamnolipid as an Effective Stabilizer for Immobilization of Cd and Pb in River Sediments. J. Hazard. Mater. 2018, 341, 381–389. DOI: 10.1016/j.jhazmat.2017.06.028.
  • Cao, J.; Feng, Y.; Lin, X.; Wang, J.; Xie, X. Iron Oxide Magnetic Nanoparticles Deteriorate the Mutual Interaction between Arbuscular Mycorrhizal Fungi and Plant. J. Soils Sediments 2017, 17, 841–851. DOI: 10.1007/s11368-016-1561-8.
  • Huang, D.; Qin, X.; Peng, Z.; Liu, Y.; Gong, X.; Zeng, G.; Huang, C.; Cheng, M.; Xue, W.; Wang, X.; Hu, Z. Nanoscale Zero-Valent Iron Assisted Phytoremediation of Pb in Sediment: Impacts on Metal Accumulation and Antioxidative System of Lolium perenne. Ecotoxicol. Environ. Saf. 2018, 153, 229–237. DOI: 10.1016/j.ecoenv.2018.01.060.
  • Islam, F.; Yasmeen, T.; Ali, Q.; Mubin, M.; Ali, S.; Arif, M. S.; Hussain, S.; Riaz, M.; Abbas, F. Copper-Resistant Bacteria Reduces Oxidative Stress and Uptake of Copper in Lentil Plants: potential for Bacterial Bioremediation. Environ. Sci. Pollut. Res. Int. 2016, 23, 220–233. DOI: 10.1007/s11356-015-5354-1.
  • Gouda, S.; Kerry, R. G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J. K. Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture. Microbiol. Res. 2018, 206, 131–140. DOI: 10.1016/j.micres.2017.08.016.
  • Yousaf, S.; Andria, V.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A. Phylogenetic and Functional Diversity of Alkane Degrading Bacteria Associated with Italian Ryegrass (Lolium multiflorum) and Birdsfoot Trefoil (Lotus corniculatus) in a Petroleum Oil-Contaminated Environment. J. Hazard. Mater. 2010, 184, 523–532. DOI: 10.1016/j.jhazmat.2010.08.067.
  • Asad, S. A.; Rehman, M.; Ahmad, R.; Umer, M. Differential Uptake of Cadmium and Chromium in Brassica Oleraceae in Response to Application of Plant Growth Promoting Rhizobacteria. Int. J. Agric. Biol. 2018, 20, 1613–1622.
  • Dąbrowska, G.; Hrynkiewicz, K.; Trejgell, A.; Baum, C. The Effect of Plant Growth-Promoting Rhizobacteria on the Phytoextraction of Cd and Zn by Brassica napus L. Int. J. Phytoremediation. 2017, 19, 597–604. DOI: 10.1080/15226514.2016.1244157.
  • Agnello, A. C.; Bagard, M.; van Hullebusch, E. D.; Esposito, G.; Huguenot, D. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons co-Contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-Assisted Phytoremediation. Sci. Total Environ. 2016, 563-564, 693–703. DOI: 10.1016/j.scitotenv.2015.10.061.
  • Lebeau, T.; Braud, A.; Jézéquel, K. Performance of Bioaugmentation-Assisted Phytoextraction Applied to Metal Contaminated Soils: A Review. Environ. Pollut. 2008, 153, 497–522. DOI: 10.1016/j.envpol.2007.09.015.
  • El-Temsah, Y. S.; Sevcu, A.; Bobcikova, K.; Cernik, M.; Joner, E. J. DDT Degradation Efficiency and Ecotoxicological Effects of Two Types of Nano-Sized Zero-Valent Iron (nZVI) in Water and Soil. Chemosphere 2016, 144, 2221–2228. DOI: 10.1016/j.chemosphere.2015.10.122.
  • Wang, S.; Shi, X.; Sun, H.; Chen, Y.; Pan, H.; Yang, X.; Rafiq, T. Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix Integra Treated with Lead. PLoS One. 2014, 9, e108568. DOI: 10.1371/journal.pone.0108568.
  • Vatehová, Z.; Kollárová, K.; Zelko, I.; Richterová-Kučerová, D.; Bujdoš, M.; Lišková, D. Interaction of Silicon and Cadmium in Brassica juncea and Brassica napus. Biologia 2012, 67, 498–504. DOI: 10.2478/s11756-012-0034-9.
  • Ghoto, K.; Simon, M.; Shen, Z.-J.; Gao, G.-F.; Li, P.-F.; Li, H.; Zheng, H.-L. Physiological and Root Exudation Response of Maize Seedlings to TiO 2 and SiO 2 Nanoparticles Exposure. BioNanoSciencce. 2020, 10, 473–413. DOI: 10.1007/s12668-020-00724-2.
  • Ahmed, E.; Holmström, S. J. Siderophores in Environmental Research: roles and Applications. Microb. Biotechnol. 2014, 7, 196–208. DOI: 10.1111/1751-7915.12117.
  • Braud, A.; Jézéquel, K.; Bazot, S.; Lebeau, T. Enhanced Phytoextraction of an Agricultural Cr- and Pb-Contaminated Soil by Bioaugmentation with Siderophore-Producing Bacteria. Chemosphere 2009, 74, 280–286. DOI: 10.1016/j.chemosphere.2008.09.013.
  • Ma, Y.; Prasad, M.; Rajkumar, M.; Freitas, H. Plant Growth Promoting Rhizobacteria and Endophytes Accelerate Phytoremediation of Metalliferous Soils. Biotechnol. Adv. 2011, 29, 248–258. DOI: 10.1016/j.biotechadv.2010.12.001.
  • Miralles, P.; Church, T. L.; Harris, A. T. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular Plants. Environ. Sci. Technol. 2012, 46, 9224–9239. DOI: 10.1021/es202995d.
  • Din, B. U.; Rafique, M.; Javed, M. T.; Kamran, M. A.; Mehmood, S.; Khan, M.; Sultan, T.; Munis, M. F. H.; Chaudhary, H. J. Assisted Phytoremediation of Chromium Spiked Soils by Sesbania sesban in Association with Bacillus xiamenensis PM14: A Biochemical Analysis. Plant Physiol. Biochem. 2020, 146, 249–258. DOI: 10.1016/j.plaphy.2019.11.010.
  • Zhao, L.; Sun, Y.; Hernandez-Viezcas, J. A.; Hong, J.; Majumdar, S.; Niu, G.; Duarte-Gardea, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Monitoring the Environmental Effects of CeO2 and ZnO Nanoparticles through the Life Cycle of Corn (Zea mays) Plants and in Situ μ-XRF Mapping of Nutrients in Kernels. Environ. Sci. Technol. 2015, 49, 2921–2928. DOI: 10.1021/es5060226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.