119
Views
4
CrossRef citations to date
0
Altmetric
Articles

Chitosan-nickel oxide composite as an efficient adsorbent for removal of Congo red from aqueous solution

, , , , &
Pages 1689-1699 | Received 02 Sep 2020, Accepted 05 Jan 2021, Published online: 04 Feb 2021

References

  • Zhang, J.; Zhou, Q.; Ou, L. Ou L. Kinetic, Isotherm, and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan/Alumina Composite. J. Chem. Eng. Data 2012, 57, 412–419. DOI: 10.1021/je2009945.
  • Cao, J.; Lin, J.; Fang, F.; Zhang, M.; Hu, Z. A New Absorbent by Modifying Walnut Shell for the Removal of Anionic Dye: Kinetic and Thermodynamic Studies. Bioresour. Technol. 2014, 163, 199–205. DOI: 10.1016/j.biortech.2014.04.046.
  • Liu, K.; Chen, L.; Huang, L.; Lai, Y. Evaluation of Ethylenediamine-Modified Nanofibrillated Cellulose/Chitosan Composites on Adsorption of Cationic and Anionic Dyes from Aqueous Solution. Carbohydr. Polym. 2016, 151, 1115–1119. DOI: 10.1016/j.carbpol.2016.06.071.
  • El-Sharkawy, R.; El-Ghamry, H. A. Multi-Walled Carbon Nanotubes Decorated with Cu(II) Triazole Schiff Base Complex for Adsorptive Removal of Synthetic Dyes. J. Mol. Liq. 2019, 282, 515–526. DOI: 10.1016/j.molliq.2019.02.137.
  • Bhowmik, M.; Debnath, A.; Saha, B. Fabrication of Mixed Phase Calcium Ferrite and Zirconia Nanocomposite for Abatement of Methyl Orange Dye from Aqua Matrix: Optimization of Process Parameters. J. Appl. Organomet. Chem. 2018, 32, 4607–4622. DOI: 10.1002/aoc.4607.
  • Das, P.; Debnath, A.; Saha, B. Ultrasound‐Assisted Enhanced and Rapid Uptake of Anionic Dyes from the Binary System onto MnFe2O4/Polyaniline Nanocomposite at Neutral pH. J. Appl. Organomet. Chem. 2020, 34, 1–16. DOI: 10.1002/aoc.5711.
  • Yang, X.; Li, Y.; Gao, H.; Wang, C.; Zhang, X.; Zhou, H. One-Step Fabrication of chitosan-Fe(OH)3 Beads for Efficient Adsorption of Anionic Dyes. Int. J. Biol. Macromol. 2018, 117, 30–41. DOI: 10.1016/j.ijbiomac.2018.05.137.
  • You, L.; Huang, C.; Lu, F.; Wang, A.; Liu, X.; Zhang, Q. Facile Synthesis of High Performance Porous Magnetic Chitosan - polyethylenimine polymer composite for Congo red removal. Int. J. Biol. Macromol. 2018, 107, 1620–1628. DOI: 10.1016/j.ijbiomac.2017.10.025.
  • Chen, H.; Wageh, S.; Al-Ghamdi, A. A.; Wang, H.; Yu, J.; Jiang, C. Hierarchical C/NiO-ZnO Nanocomposite Fibers with Enhanced Adsorption Capacity for Congo Red. J. Colloid Interface Sci. 2019, 537, 736–745. DOI: 10.1016/j.jcis.2018.11.045.
  • Oladipo, A. A.; Gazi, M. Microwaves Initiated Synthesis of Activated Carbon-Based Composite Hydrogel for Simultaneous Removal of Copper(II) Ions and Direct Red 80 Dye: A Multi-Component Adsorption System. J. Taiwan Inst. Chem. Eng. 2015, 47, 125–136. DOI: 10.1016/j.jtice.2014.09.027.
  • Ma, J.; Wang, R.; Wang, X.; Zhang, H.; Zhu, B.; Lian, L.; Lou, D. Drinking Water Treatment by Stepwise Flocculation Using Polysilicate Aluminum Magnesium and Cationic Polyacrylamide. J. Environ. Chem. Eng. 2019, 7, 103049–103056. DOI: 10.1016/j.jece.2019.103049.
  • Wang, Y.; He, Y.; Yan, S.; Yin, X.; Chen, J. Development of Alginate Hydrogel Modified Multifunctional Filtration Membrane with Robust Anti-Fouling Property for Efficient Water Purification. Colloid. Surface. A 2019, 582, 123891–123899. DOI: 10.1016/j.colsurfa.2019.123891.
  • Fowsiya, J.; Madhumitha, G.; Al-Dhabi, N. A.; Arasu, M. V. Photocatalytic Degradation of Congo Red Using Carissa edulis Extract Capped Zinc Oxide Nanoparticles. J. Photochem. Photobiol. B. 2016, 162, 395–401. DOI: 10.1016/j.jphotobiol.2016.07.011.
  • Zouboulis, A.; Zamboulis, D.; Szymanska, K. Hybrid Membrane Processes for the Treatment of Surface Water and Mitigation of Membrane Fouling. Sep. Purif. Technol. 2014, 137, 43–52. DOI: 10.1016/j.seppur.2014.09.023.
  • Solís, M.; Solís, A.; Inés Pérez, H.; Manjarrez, N.; Maribel, F. Microbial Decolouration of Azo Dyes: A Review. Process Biochem. 2012, 47, 1723–1748. DOI: 10.1016/j.procbio.2012.08.014.
  • Dawood, S.; Sen, T. K. Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder as Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design. Water Res. 2012, 46, 1933–1946. DOI: 10.1016/j.watres.2012.01.009.
  • Gul, K.; Sohni, S.; Waqa, r. M.; Ahmad, F.; Nik Norulaini, N. A.; Mohd. Omar, A. K.; Nik Norulaini.; Mohd. Omar, A. K. Functionalization of Magnetic Chitosan with Graphene Oxide for Removal of Cationic and Anionic Dyes from Aqueous Solution. Carbohydr. Polym. 2016, 152, 520–531. DOI: 10.1016/j.carbpol.2016.06.045.
  • Zahir, A.; Aslam, Z.; Kamal, S. M.; Ahmad, W.; Abbas, A.; Shawabkeh, R. A. Development of Novel Cross-Linked Chitosan for the Removal of Anionic Congo Red Dye. J. Mol. Liq. 2017, 244, 211–218. DOI: 10.1016/j.molliq.2017.09.006.
  • Hou, H. J.; Zhou, R. H.; Wu, P.; Wu, L. Removal of Congo Red Dye from Aqueous Solution with Hydroxyapatite/Chitosan Composite. Chem. Eng. J. 2012, 211-212, 336–342. DOI: 10.1016/j.cej.2012.09.100.
  • Zheng, X.; Li, X.; Li, J.; Wang, L.; Jin, W.; Liu, J.; Pei, Y.; Tang, K. Efficient Removal of Anionic Dye (Congo Red) by Dialdehyde Microfibrillated Cellulose/Chitosan Composite Film with Significantly Improved Stability in Dye Solution. Int. J. Biol. Macromol. 2018, 107, 283–289. DOI: 10.1016/j.ijbiomac.2017.08.169.
  • Yu, M.; Gao, M.; Shen, T.; Zeng, H. Single and Simultaneous Adsorption of Rhodamine B and congo Red from Aqueous Solution by Organo-Vermiculites. J. Mol. Liq. 2019, 292, 111408. DOI: 10.1016/j.molliq.2019.111408.
  • Banerjee, S.; Chattopadhyaya, M. C. Adsorption Characteristics for the Removal of a Toxic Dye, Tartrazine from Aqueous Solutions by a Low Cost Agricultural by-Product. Arab. J. Chem 2017, 10, S1629–S1638. DOI: 10.1016/j.arabjc.2013.06.005.
  • Zhou, L.; Zhou, H.; Hu, Y.; Yan, S.; Yang, J. Adsorption Removal of Cationic Dyes from Aqueous Solutions Using Ceramic Adsorbents Prepared from Industrial Waste Coal Gangue. J. Environ. Manage. 2019, 234, 245–252. DOI: 10.1016/j.jenvman.2019.01.009.
  • Zhang, X.; Li, Y.; Li, M.; Zheng, H.; Du, Q.; Li, H.; Wang, Y.; Wang, D.; Wang, C.; Sui, K.; et al. Preparation of Improved Gluten Material and Its Adsorption Behavior for congo Red from Aqueous Solution. J. Colloid Interface Sci. 2019, 556, 249–257. DOI: 10.1016/j.jcis.2019.08.037.
  • Lee, H. C.; Jeong, Y. G.; Min, B. G.; Lyoo, W. S.; Lee, S. C. Preparation and Acid Dye Adsorption Behavior of Polyurethane/Chitosan Composite Foams. Fibers Polym. 2009, 10, 636–642. DOI: 10.1007/s12221-010-0636-1.
  • Kuang, S. P.; Wang, Z. Z.; Liu, J.; Wu, Z. Preparation of Triethylene-Tetramine Grafted Magnetic Chitosan for Adsorption of Pb(II) Ion from Aqueous Solutions. J. Hazard. Mater. 2013, 260, 210–219. DOI: 10.1016/j.jhazmat.2013.05.019.
  • Zhou, Z.; Lin, S.; Yue, T.; Lee, T. Adsorption of Food Dyes from Aqueous Solution by Glutaraldehyde Cross-Linked Magnetic Chitosan Nanoparticles. J. Food Eng. 2014, 126, 133–141. DOI: 10.1016/j.jfoodeng.2013.11.014.
  • Haldorai, Y.; Shim, J. J. An Efficient Removal of Methyl Orange Dye from Aqueous Solution by Adsorption onto Chitosan/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447–453. DOI: 10.1016/j.apsusc.2013.11.158.
  • Kloster, G. A.; Mosiewicki, M. A.; Marcovich, N. E. Chitosan/Iron Oxide Nanocomposite Films: Effect of the Composition and Preparation Methods on the Adsorption of congo Red. Carbohydr. Polym. 2019, 221, 186–194. DOI: 10.1016/j.carbpol.2019.05.089.
  • Singh, V.; Sharma, A. K.; Sanghi, R. Poly(Acrylamide) Functionalized Chitosan: An Efficient Adsorbent for Azo Dyes from Aqueous Solutions. J. Hazard. Mater. 2009, 166, 327–335. DOI: 10.1016/j.jhazmat.2008.11.026.
  • Tahira, I.; Aslam, Z.; Abbas, A.; Monim-Ul-Mehboob, M.; Ali, S.; Asghar, A. Adsorptive Removal of Acidic Dye onto Grafted Chitosan: A Plausible Grafting and Adsorption Mechanism. Int. J. Biol. Macromol. 2019, 136, 1209–1218. DOI: 10.1016/j.ijbiomac.2019.06.173.
  • Banu, H. T.; Karthikeyan, P.; Meenakshi, S. Lanthanum (III) Encapsulated Chitosan-Montmorillonite Composite for the Adsorptive Removal of Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2018, 112, 284–293. DOI: 10.1016/j.ijbiomac.2018.01.138.
  • Janaki, V.; Oh, B. T.; Shanthi, K.; Lee, K. J.; Ramasamy, A. K.; Kamala-Kannan, S. Polyaniline/Chitosan Composite: An Eco-Friendly Polymer for Enhanced Removal of Dyes from Aqueous Olution. Synth. Met. 2012, 162, 974–980. DOI: 10.1016/j.synthmet.2012.04.015.
  • Peng, Q.; Liu, M.; Zheng, J.; Zhou, C. Adsorption of Dyes in Aqueous Solutions by Chitosan-Halloysite Nanotubes Composite Hydrogel Beads. Micropor. Mesopor. Mat. 2015, 201, 190–201. DOI: 10.1016/j.micromeso.2014.09.003.
  • Ahmadi, M.; Niari, H. M.; Kakavandi, B. Development of Maghemite Nanoparticles Supported on Cross-Linked Chitosan(γ-Fe2O3@CS)as a Recoverable Mesoporous Magnetic Composite for Effective Heavy Metals Removal. J. Mol. Liq. 2017, 248, 184–196. DOI: 10.1016/j.molliq.2017.10.014.
  • Gonçalves, J. O.; Silva, K. A.; Rios, E. C.; Crispim, M. M.; Dotto, G. L.; Almeida Pinto, L. A. Chitosan Hydrogel Scaffold Modified with Carbon Nanotubes and Its Application for Food Dyes Removal in Single and Binary Aqueous Systems. Int. J. Biol. Macromol. 2020, 142, 85–93. DOI: 10.1016/j.ijbiomac.2019.09.074.
  • Zhou, L.; Xu, J.; Liang, X.; Liu, Z. Adsorption of Platinum(IV) and Palladium(II) from Aqueous Solution by Magnetic Cross-Linking Chitosan Nanoparticles Modified with Ethylenediamine. J. Hazard. Mater. 2010, 182, 518–524. DOI: 10.1016/j.jhazmat.2010.06.062.
  • Zhu, W.; Dang, Q.; Liu, C.; Yu, D.; Chang, G.; Pu, X.; Wang, Q.; Sun, H.; Zhang, B.; Cha, D. Cr(VI) and Pb(II) Capture on pH-Responsive Polyethyleneimine and Chloroacetic Acid Functionalized Chitosan Microspheres. Carbohyd Polym. 2019, 219, 353–367. DOI: 10.1016/j.carbpol.2019.05.046.
  • Chatterjee, S.; Chatterjee, T.; Lim, S. R.; Woo, S. H. Effect of Surfactant Impregnation into Chitosan Hydrogel Beads Formed by Sodium Dodecyl Sulfate Gelation for the Removal of Congo Red, Separation Science and Technology. Sep. Sci. Technol. 2011, 46, 2022–2031. DOI: 10.1080/01496395.2011.592520.
  • Chatterjee, S.; Lee, M. W.; Woo, S. H. Influence of Impregnation of Chitosan Beads with Cetyl Trimethyl Ammonium Bromide on Their Structure and Adsorption of Congo Red from Aqueous Solutions. Chem. Eng. J. 2009, 155, 254–259. DOI: 10.1016/j.cej.2009.07.051.
  • Rong, X.; Qiu, F.; Qin, J.; Zhao, H.; Yan, J.; Yang, D. A Facile Hydrothermal Synthesis, Adsorption Kinetics and Isotherms to Congo Red Azo-Dye from Aqueous Solution of NiO/Graphene Nanosheets Adsorbent. J. Ind. Eng. Chem. 2015, 26, 354–363. DOI: 10.1016/j.jiec.2014.12.009.
  • Sharma, S. K.; Bahadur, J.; Patil, P. N.; Maheshwari, P.; Mukherjee, S.; Sudarshan, K.; Mazumder, S.; Pujari, P. K. Revealing the Nano-Level Molecular Packing in Chitosan-NiO Nanocomposite by Using Positron Annihilation Spectroscopy and Small-Angle X-Ray Scattering. ChemPhysChem 2013, 14, 1055–1062. DOI: 10.1002/cphc.201200902.
  • Ahmad, H.; Reduan, S. A.; Yusoff, N. Nickel Oxide Nanoparticles Grafted with Chitosan as Saturable Absorber for Tunable Passively Q-Switched Fiber Laser in S+/S Band. Infrared Phys. Technol. 2018, 93, 96–102. DOI: 10.1016/j.infrared.2018.07.019.
  • Abdolmohammad-Zadeh, H.; Ayazi, Z.; Naghdi, Z. Nickel Oxide/Chitosan Nano-Composite as a Magnetic Adsorbent for Preconcentration of Zn(II) Ions. J. Magn. Magn. Mater. 2019, 488, 165311. DOI: 10.1016/j.jmmm.2019.165311.
  • Alberto, C.; Anna, M.; Antonio, M. L.; Roberto, O.; Giacomo, C. Heavy Metals Uptake by Sardinian Natural Zeolites: Experiment and Modeling. Ind. Eng. Chem. Res. 2006, 45, 1074–1084. DOI: 10.1021/ie050375z.
  • Jaworska, M.; Sakurai, K.; Gaudon, P.; Guibal, E. Influence of Chitosan Characteristics on Polymer Properties, I: Crystallographic Properties. Polym. Int. 2003, 52, 198–205. DOI: 10.1002/pi.1159.
  • Meng, T.; Ma, P.; Chang, J.; Wang, Z.; Ren, T. The Electrochemical Capacitive Behaviors of NiO Nanoparticles. Electrochim. Acta 2014, 125, 586–592. DOI: 10.1016/j.electacta.2014.01.144.
  • Long, L.; Nan, C.; Chuanping, F.; Yu, G.; Miao, L. Xanthate-Modified Magnetic Chitosan/Poly (Vinyl Alcohol) Adsorbent: Preparation, Characterization, and Performance of Pb(II) Removal from Aqueous Solution. J. Taiwan. Ins. Chem. Eng. 2017, 78, 485–492. DOI: 10.1016/j.jtice.2017.06.009.
  • Wei, C.; Qian, T.; Zhujun, L.; Fei, L.; Yi, L.; Shuang, Z.; Ke, Z.; Lin, C.; Dandan, M. Fabricating a Novel Chitosan-Based Adsorbent with Multifunctional Synergistic Effect for Cu(II)Removal: Maleic Anhydride as a Connecting Bridge. Chem. Eng. Res. Des. 2020, 163, 21–35. DOI: 10.1016/j.cherd.2020.08.023.
  • Ngah, W. S. W.; Teong, L. C.; Wong, C. S. Preparation and Characterization of Chitosan–Zeolite Composites. J. Appl. Polym. 2012, 125, 2417–2425. DOI: 10.1002/app.36503.
  • Wang, L.; Wang, A. Q. Adsorption Characteristics of Congo Red onto the Chitosan/Montmorillonite Nanocomposite. J. Hazard. Mater. 2007, 147, 979–985. DOI: 10.1016/j.jhazmat.2007.01.145.
  • Ying, G.; Jun, R.; Yu, l. W. H. G.; Sheng, L.; Ge, C.; Feng, P. Hemicelluloses-Based Magnetic Aerogel as an Efficient Adsorbent for Congo Red. Int. J. Biol. Macromol. 2020, 155, 369–375. DOI: 10.1016/j.ijbiomac.2020.03.231.
  • Umma, H.; Jacky, J.; Tan, C.; Bee, C.; Amalina, M. A. Degradation of Methyl Orange and congo Red by Using Chitosan/Polyvinyl Alcohol/TiO2 Electrospun Nanofibrous Membrane. Int. J. Biol. Macromol. 2019, 131, 821–827. DOI: 10.1016/j.ijbiomac.2019.03.132.
  • Wei, Z.; Ying, L.; Meng, M.; Sen, C.; Qi, Z. A Novel Chitosan–Vanadium-Titanium-Magnetite Composite as a Superior Adsorbent for Organic Dyes in Wastewater. Environ. Int. 2020, 142, 105798. DOI: 10.1016/j.envint.2020.105798.
  • Arif, C.; Afaq, A.; Sunita, K.; Sahid, H. Superadsorbent Ni–Co–S/SDS Nanocomposites for Ultrahigh Removal of Cationic, Anionic Organic Dyes and Toxic Metal Ions: Kinetics, Isotherm and Adsorption Mechanism. ACS Sustain. Chem. Eng. 2019, 7, 4165–4176. DOI: 10.1021/acssuschemeng.8b05775.
  • Debabrata, M.; Soumita, M.; Parukuttyamma, S. Evaluation of Mechanism on Selective, Rapid, and Superior Adsorption of Congo Red by Reusable Mesoporous α-Fe2O3 Nanorods. ACS Sustain. Chem. Eng. 2017, 5, 11255–11267. DOI: 10.1021/acssuschemeng.7b01684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.