107
Views
5
CrossRef citations to date
0
Altmetric
Articles

Mechanism underlying initiation of migration of film-like residual oil

, , , , &
Pages 1927-1947 | Received 16 Sep 2020, Accepted 24 Jan 2021, Published online: 12 Feb 2021

References

  • Liu, L. L.; Wang, L. L.; Yang, S. R.; Fan, J. W.; Wang, C. Y. Study on Displacement of Residual Oil by Microporous Polymer Solution. J. Eng. Thermophys. 2018, 3, 348–354. DOI: 10.7623/syxb200104012.
  • Tadmor, R.; Das, R.; Gulec, S.; Liu, J.; E N'guessan, H.; Shah, M.; S Wasnik, P.; Yadav, S. B. Solid-Liquid Work of Adhesion. Langmuir 2017, 33, 3594–3600. DOI: 10.1021/acs.langmuir.6b04437.
  • Nieto, D. R.; Santese, F.; Toth, R.; Posocco, P.; Pricl, S.; Fermeglia, M. Simple, Fast, and Accurate in Silico Estimations of Contact Angle, Surface Tension, and Work of Adhesion of Water and Oil Nanodroplets on Amorphous Polypropylene Surfaces. ACS Appl. Mater. Interfaces 2012, 4, 2855–2859. DOI: 10.1021/am3004818.
  • Hejda, F.; Solar, P.; Kousal, J. 2010 Surface Free Energy Determination by Contact Angle Measurements Comparison of Various Approaches. WDS'10 Proceedings of Contributed Papers, Part III, 25–30.
  • Hsieh, C. T.; Wu, F. L.; Chen, W. Y. Contact Angle Hysteresis and Work of Adhesion of Oil Droplets on Nanosphere Stacking Layers. J. Phys. Chem. C. 2009, 113, 13683–13688. DOI: 10.1021/jp9036952.
  • Xia, H.; Wang, D.; Wang, G.; Wu, J. Effect of Viscoelasticity of Polymersolution on Residual Oil Film. J. Daqing Petrol. Institute 2008, 26, 398–412. DOI: 10.1080/10916460600809600.
  • Zhang, L. J.; Yue, X. A. Displacement Mechanism Analysis of Dispersed Discontinuou Residual Oil Film in Oil Reservoir. Oilfield Chem. 2006, 3, 243–247.
  • Fang, Y. J.; Yang, E. L.; Yin, D. Y.; Gan, Y. F. Study on Distribution Characteristics of Microscopic Residual Oil in Low Permeability Reservoirs. J. Dispersion Sci. Technol. 2020, 41, 1–10. DOI: 10.1080/01932691.2019.1594886.
  • Gloor, G. J.; Jackson, G.; Blas, F. J.; de Miguel, E. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J. Chem. Phys. 2005, 123, 134703–134710. DOI: 10.1063/1.2038827.
  • Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Paul, J. P. Adhesionof Polymers. Prog. Polym. Sci. 2009, 34, 948–968. DOI: 10.1016/j.progpolymsci.2009.04.007.
  • Wei, Y. G.; Hutchinson, J. W. Interface Strength, Work of Adhesion and Plasticity in the Peel Test. Int. J. Fracture 1998, 93, 315–333. DOI: 10.1023/A:1007545200315.
  • Mishra, S.; Panda, P.; Pradhan, N.; Sathpathy, D.; Mishra, B. K. Investigators at CSIR Report Findings in Fuel Research. Life Science Weekly 2014. DOI: 10.3892/ijmm.2017.3024.
  • Chen, L.; Li, Y. F.; Peng, J. H.; Sun, L.; Li, B.; Wang, Z. H.; Zhao, S. Y. A Comparable Study of Fe//MCs (M = Ti, V Interfaces by First-Principles Method: The Chemical Bonding, Work of Adhesion and Electronic Structures. J. Phys. Chem. Solids 2020, 138, 109292. DOI: 10.1016/j.jpcs.2019.109292.
  • Zhao, L.; Liu, Z.-F.; Jun Jin, W.; Feng, F. Luminescence Property of Phosphoramidic Acid Oligomer Nanodots in Aqueous Solution. Spectrochim. Acta Part A:Mol. Biomol. Spectroscopy 2021, 248, 119261. DOI: 10.1016/j.saa.2020.119261.
  • Berim, G. O.; Ruckenstein, E. Bond Number Revisited: axisymmetric Macroscopic Pendant Drop. Langmuir:The ACS J. Surfaces Colloids 2020, 36, 6512–6520. DOI: 10.1021/acs.langmuir.0c00878.
  • Xu, Z.; Chen, Y.; Chen, X.; Zhang, J.; Huang, S.; Chen, A.; Fu, X.; Wu, F.; Zhang, P. Enhanced Thermal Conductivity and Electrically Insulating of Polymer Composites. J. Mater. Sci. 2021, 56, 4225–4238. DOI: 10.1007/s10853-020-05530-5.
  • Baranov, A. V. Influence of Temperature and Pressure on Viscoelastic Fluid Flow in a Plane Channel. J. Eng. Phys. Thermophy. 2020, 93, 1296–1302. DOI: 10.1007/s10891-020-02234-0.
  • Kariyado, T.; Hu, X. Topological States Characterized by Mirror Winding Numbers in Graphene with Bond Modulation. Sci. Rep. 2017, 7, 191–197. DOI: 10.1038/s41598-017-16334-0.
  • Pan, Y.; Yee, C. L.; Ke, Q. Z. Constitutive Equation with Fractional Derivatives for the Generalized UCM Model. J. Non-Newtonian Fluid Mech. 2009, 165, 88–97. DOI: 10.1016/j.jnnfm.2009.10.002.
  • Yang, F.; Guo, C.; Zhang, M.; Bhandari, B.; Liu, Y. Improving 3D Printing Process of Lemon Juice Gel Based on Fluid Flow Numerical Simulation. LWT-Food Sci. Technol. 2019, 102, 89–99. DOI: 10.1016/j.lwt.2018.12.031.
  • Wang, H. H.; Zhu, W. M.; Fu, C. H.; Wang, C. P.; Lu, P. G. The Failure Analysis and Simulation of an ABS Extrusion Die. Procedia Eng. 2015, 130, 1419–1424. DOI: 10.1016/j.proeng.2015.12.311.
  • Zhong, Q. H.; Ke, Z.; Shu, P. Y. Security Analysis on Single-Screw Extrusion Process of Solid Propellant by Numerical Simulation. Adv. Mater. Res. 2014, 12, 605–609. DOI: .www.scientific.net/AMR.997.605.
  • Wei, C. S.; Ts, F. W.; Ren, H. C.; Kuei, Y. C.; Chi, W. H. Flow and Film-Forming Characteristics Analysis of Non-Newtonian Fluid Slot Coating. Adv. Mater. Res. 2014, 939, 539–546. DOI: .www.scientific.net/AMR.939.539.
  • Zhong, T. T.; Rao, G. N.; Peng, J. H. Numerical Simulation of Three Dimensional Flow Fields for Extrusion Process of GR-35 Double-Base Propellant. Procedia Eng. 2014, 84, 920–926. DOI: 10.1016/j.proeng.2014.10.516.
  • Yu, J. P.; Sun, Y. Z.; Shi, F.; Zheng, H. B. Nitsche’s Type Stabilized Finite Element Method for the Fully Mixed Stokes–Darcy Problem with Beavers–Joseph Conditions. Appl. Math. Lett. 2020, 110, 106588. DOI: 10.1016/j.aml.2020.106588.
  • Alenezi, S. S.; Jerban, S. Elkoun , Importance of the PMMA Viscoelastic Rheology on the Reduction of the Leakage Risk During Osteoporotic Bone Augmentation: A Numerical Leakage Model Through a Porous Media. J. Mech. Behav. Biomed. Mater. 2017, 65, 29–41. DOI: 10.1016/j.jmbbm.2016.08.009.
  • Rabbani, A.; Ashraf, W. A Space Time Conservation Element and Solution Element Method for Solving Two-Species Chemotaxis Model. Math. Comput. Simul. 2020, 178, 27–45. DOI: 10.1016/j.matcom.2020.05.031.
  • Li, R.; Zhang, Y. C.; Wu, J. H.; Chen, Z. X. Discontinuous Finite Volume Element Method for Darcy Flows in Fractured Porous Media. J. Comput. Appl. Math. 2021, 381, 113025. DOI: 10.1016/j.cam.2020.113025.
  • Presho, M.; Hill, M. A Conservative Generalized Multiscale Finite Volume/Element Method for Modeling Two-Phase Flow with Capillary Pressure. J. Comput. Appl. Math. 2021, 381, 113026. DOI: 10.1016/j.cam.2020.113026.
  • Li, Y. Q.; Li, F. T.; Chao, Q.; Song, G. B. The Maximum Power Point Tracking Method Based on Lagrange Multiplier. Sensors&Transducers 2013, 161, 363–368.
  • Shen, J. Z.; Chen, T. T.; Huang, Y.; Jin, Q.; Ji, J. A New Morphogenetic Strategy Inspired by the Viscoelasticity of Polymers. ACS Appl. Mater. & Interfaces 2020, 12(32). DOI: 10.1021/acsami.0c08995.
  • Yu, W.; Wang, J.; You, W. Structure and Linear Viscoelasticity of Polymer Nanocomposites with Agglomerated Particles. Polymer 2016, 98, 190–200. DOI: 10.1016/j.polymer.2016.06.028.
  • Volkov, V. S. The Spectral Theory of Anisotropic Linear Viscoelasticity of Polymers. Polym. Sci. Ser. A. 2015, 57, 898–903. DOI: 10.1134/S0965545X15060176.
  • Huang, B.; Hu, X. Y.; Fu, C.; Zhou, Q. Experimental Study on the Effect of ASP Flooding on Improving Oil Recovery in Low Permeability Reservoirs Based on a Partial Quality Tool. Processes 2020, 8, 296. DOI: 10.3390/pr8030296.
  • Huang, B.; Hu, X. Y.; Fu, C.; Cheng, H. R.; Wang, X.; Wang, L. Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool. Polymers 2019, 11, 1299. DOI: 10.3390/polym11081299.
  • Song, Y. H.; Zheng, Q. Linear Viscoelasticity of Polymer Melts Filled with Nano-Sized Fillers. Polymers 2010, 51, 3262–3268. DOI: 10.1016/j.polymer.2010.05.018.
  • Duran-Frigola, M.; Pauls, E.; Guitart-Pla, O.; Bertoni, M.; Alcalde, V.; Amat, D.; Juan-Blanco, T.; Aloy, P. Publisher Correction: Extending the Small-Molecule Similarity Principle to All Levels of Biology with the Chemical Checker. Nat. Biotechnol. 2020, 38, 1087–1096. DOI: 10.1038/s41587-020-0502-7.
  • Sadeghinezhad, E.; Siddiqui, M. A. Q.; Roshan, H.; Regenauer-Lieb, K. On the Interpretation of Contact Angle for Geomaterial Wettability: Contact Area versus Three-Phase Contact Line. J. Petrol. Sci. Eng. 2020, 195, 107579. DOI: 10.1016/j.petrol.2020.107579.
  • Han, X. Y.; Wang, J. H.; Chen, M. E.; Zhang, Z.; Li, Z.; Li, Y. J. Similarity Principle of Microwave Argon Plasma at Low Pressure. Chin. Phys. B. 2018, 27, 085206. DOI: 10.1088/1674-1056/27/8/085206.
  • Yildirim, B.; Yilmaz, K. B.; Comez, I.; Guler, M. A. Double Frictional Receding Contact Problem for an Orthotropic Layer Loaded by Normal and Tangential Forces. Meccanica 2019, 54, 2183–2206. DOI: 10.1007/s11012-019-01058-4.
  • Nadimi, S.; Otsubo, M.; Fonseca, J.; O’Sullivan, C. Numerical Modelling of Rough Particle Contacts Subject to Normal and Tangential Loading. Granular Matter 2019, 21, 1–14. DOI: 10.1007/s10035-019-0970-y.
  • Saengow, C.; Giacomin, A. J.; Dimitrov, A. S. Normal Stress Differences of Human Blood in Unidirectional Large-Amplitude Oscillatory Shear Flow. J. Fluids Eng. 2020, 142(12). DOI: 10.1115/1.4048467.
  • Ren, Z. W.; Nie, J. H.; Shao, J. J.; Lai, Q. S.; Wang, L. F.; Chen, J.; Chen, X. Y.; Wang, Z. L. Fully Elastic and Metal-Free Tactile Sensors for Detecting Both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Adv. Funct. Mater. 2018, 28, 1802989. DOI: 10.1002/adfm.201802989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.