266
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cationic surfactant-aided surface modification of the activated carbon-based materials for the enhancement of phenol adsorption-capacity determined by ultraviolet-visible spectroscopy

&
Pages 1968-1982 | Received 15 Oct 2020, Accepted 24 Jan 2021, Published online: 16 Feb 2021

References

  • Akl, M. A. A.; Dawy, M.; Serage, A. A. Efficient Removal of Phenol from Water Samples Using Sugarcane Bagasse Based Activated Carbon. J. Anal. Bioanal. Tech. 2014, 5, 1000189. DOI: 10.4172/2155-9872.1000189.
  • Jallouli, N.; Elghniji, K.; Hentati, O.; Ribeiro, A. R.; Silva, A. M. T.; Ksibi, M. UV and Solar Photo-Degradation of Naproxen: TiO2 Catalyst Effect, Reaction Kinetics, Products Identification and Toxicity Assessment. J. Hazard. Mater. 2016, 304, 329–336. DOI: 10.1016/j.jhazmat.2015.10.045.
  • Patel, S.; Majumder, S. K.; Das, P.; Ghosh, P. Ozone Microbubble-Aided Intensification of Degradation of Naproxen in a Plant Prototype. J. Environ. Chem. Eng. 2019, 7, 103102. DOI: 10.1016/j.jece.2019.103102.
  • Straub, J. O.; Stewart, K. M. Deterministic and Probabilistic Acute-Based Environmental Risk Assessment for Naproxen for Western Europe. Environ. Toxicol. Chem. 2007, 26, 795–806. DOI: 10.1897/06-212r.1.
  • Öztürk, D.; Şahan, T. Design and Optimization of Cu(II) Adsorption Conditions from Aqueous Solutions by Low-Cost Adsorbent Pumice with Response Surface Methodology. Pol. J. Environ. Stud. 2015, 24, 1749–1756. DOI: 10.15244/pjoes/40270.
  • Ozturk, D.; Sahan, T.; Bayram, T.; Erkus, A. Application of Response Surface Methodology (RSM) to Optimize the Adsorption Conditions of Cationic Basic Yellow 2 onto Pumice Samples as a New Adsorbent. Fresenius Environ. Bull. 2017, 26, 3285–3292.
  • Ecer, Ü.; Şahan, T. A Response Surface Approach for Optimization of Pb(II) Biosorption Conditions from Aqueous Environment with Polyporus Squamosus Fungi as a New Biosorbent and Kinetic, Equilibrium and Thermodynamic Studies. Desalin Water Treat. 2008, 102, 229–240. DOI: 10.5004/dwt.2018.21871.
  • Zazouli, M. A.; Mahdavi, Y.; Bazrafshan, E.; Balarak, D. Phytodegradation Potential of Bisphenol a from Aqueous Solution by Azolla Filiculoides. J. Environ. Health Sci. 2016, 12, 1–5. http://www.ijehse.com/content/12/1/66.
  • Balarak, D. Kinetics, Isotherm and Thermodynamics Studies on Bisphenol a Adsorption Using Barley Husk. Int. J. Chemtech. Res. 2016, 9, 681–690. http://eprints.zaums.ac.ir/2081/.
  • Dyanati-Tilaki, R. A.; Yousefi, Z.; Yazdani-Cherati, J.; Balarak, D. The Ability of Azolla and Lemna Minor Biomass for Adsorption of Phenol from Aqueous Solutions. J. Mazand. Univ. Med. Sci. 2013, 23, 141–146. http://jmums.mazums.ac.ir/browse.php?a_id=2360&sid=1&slc_lang=en.
  • Diyanati, R. A.; Yazdani, J.; Belarak, D. Effect of Sorbitol on Phenol Removal Rate by Lemna Minor. J. Mazand. Univ. Med. Sci. 2013, 22, 58–65. http://jmums.mazums.ac.ir/article-1-2030-en.html.
  • Dyanati, R. A.; Yousefi, Z. A.; Cherati, J. Y.; Belarak, D. Investigating Phenol Absorption from Aqueous Solution by Dried Azolla. J. Mazand. Univ. Med. Sci. 2013, 22, 13–20. http://jmums.mazums.ac.ir/browse.php?a_id=2017&sid=1&slc_lang=en.
  • Balarak, D.; Joghataei, A. Biosorption of Phenol Using Dried Rice Husk Biomass: Kinetic and Equilibrium Studies. Der Pharma Chem. 2016, 8, 96–103. http://derpharmachemica.com/archive.html.
  • Novais, R. M.; Caetano, A. P. F.; Seabra, M. P.; Labrincha, J. A.; Pullar, R. C. Extremely Fast and Efficient Methylene Blue Adsorption Using Eco-Friendly Cork and Paper Waste-Based Activated Carbon Adsorbents. J. Clean. Prod 2018, 197, 1137–1147. DOI: 10.1016/j.jclepro.2018.06.278.
  • Kazeem, T. S.; Lateef, S. A.; Ganiyu, S. A.; Qamaruddin, M.; Tanimu, A.; Sulaiman, K. O.; Jillani, S. M. S.; Alhooshani, K. Aluminium-Modified Activated Carbon as Efficient Adsorbent for Cleaning of Cationic Dye in Wastewater. J. Clean. Prod. 2018, 205, 303–312. DOI: 10.1016/j.jclepro.2018.09.114.
  • Abatan, O. G.; Oni, B. A.; Agboola, O.; Efevbokhan, V.; Abiodun, O. O. Production of Activated Carbon from African Star Apple Seed Husks, Oil Seed and Whole Seed for Wastewater Treatment. J. Clean. Prod. 2019, 232, 441–450. DOI: 10.1016/j.jclepro.2019.05.378.
  • Kang, Y. L.; Toh, S. K. S.; Monash, P.; Ibrahim, S.; Saravanan, P. Adsorption Isotherm, Kinetic and Thermodynamic Studies of Activated Carbon Prepared from Garcinia Mangostana Shell. Asia-Pac. J. Chem. Eng. 2013, 8, 811–818. DOI: 10.1002/apj.1725.
  • Sellaoui, L.; Kehili, M.; Lima, E. C.; Thue, P. S.; Petriciolet, A. B.; Lamine, A. B.; Dotto, G. L.; Erto, A. Adsorption of Phenol on Microwave-Assisted Activated Carbons: Modelling and Interpretation. J. Mol. Liq. 2019, 274, 309–314. DOI: 10.1016/j.molliq.2018.10.098.
  • Sun, J.; Liu, X.; Zhang, F.; Zhou, J.; Wu, J.; Alsaedi, A.; Hayat, T.; Li, J. Insight into the Mechanism of Adsorption of Phenol and Resorcinol on Activated Carbons with Different Oxidation Degrees. Colloid. Surf. A 2019, 563, 22–30. DOI: 10.1016/j.colsurfa.2018.11.042.
  • Ferreira, M. E. O.; Vaz, B. G.; Borba, C. E.; Alonso, C. G.; Ostroski, L. C. Modified Activated Carbon as a Promising Adsorbent for Quinoline Removal. Micropor. Mesopor. Mat. 2019, 277, 208–216. DOI: 10.1016/j.micromeso.2018.10.034.
  • Mondal, S.; Majumder, S. K. Synthesis of Phosphate Functionalized Highly Porous Activated Carbon and Its Utilization as an Efficient Copper (II) Adsorbent. Korean J. Chem. Eng. 2019, 36, 701–712. DOI: 10.1007/s11814-019-0260-8.
  • Karabacakoğlu, B.; Tumsek, F.; Demiral, H.; Demiral, I. Liquid Phase Adsorption of Phenol by Activated Carbon Derived from Hazelnut Bagasse. J. Int. Environ. Appl. Sci. 2008, 3, 373–380. http://www.jieas.com/fvolumes/vol081-5/3-5-7.pdf.
  • Al-Doury, M. M. I.; Ali, S. S. Removal of Phenol and Parachlorophenol from Synthetic Wastewater Using Prepared Activated Carbon from Agricultural Wastes. Int. J. Green Energy 2015, 4, 92–101. DOI: 10.11648/j.ijrse.20150403.14.
  • Ma, Y.; Gao, N.; Chu, W.; Li, C. Removal of Phenol by Powdered Activated Carbon Adsorption. Front. Environ. Sci. Eng. 2013, 7, 158–165. DOI: 10.1007/s11783-012-0479-7.
  • Kumar, P. A.; Prashanti, G. Removal of Phenol from Wastewater Using Tamarind Nut and Commercial Activated Carbons. Int. J. Chem. Sci. 2015, 13, 257–264. https://www.tsijournals.com/articles/removal-of-phenol-from-wastewater-using-tamarind-nut-and-commercial-activated-carbons.pdf.
  • Sabermahani, F.; Modaberian, R. Removal of Phenol from Aqueous Solutions by Activated Carbon Derived from Poplar Sawdust. MJLTM 2016, 6, 186–192.
  • Ribeiro, L. A. S.; Rodrigues, L. A.; Thim, G. P. Preparation of Activated Carbon from Orange Peel and Its Application for Phenol Removal. Int. J. Eng. Res. 2017, 3, 122–129. http://ijoer.com/Paper-March-2017/IJOER-MAR-2017-23.pdf.
  • Abdel-Ghani, N. T.; El-Chaghaby, G. A.; Helal, F. S. Preparation, Characterization and Phenol Adsorption Capacity of Activated Carbons from African Beech Wood Sawdust. Global J. Environ. Sci. Manage 2016, 2, 209–222. DOI: 10.7508/gjesm.2016.03.001.
  • Leili, M.; Faradmal, J.; Kosravian, F.; Heydari, M. A. Comparison Study on the Removal of Phenol from Aqueous Solution Using Organomodifed Bentonite and Commercial Activated Carbon. Avicenna J. Environ. Health Eng. 2015, 2, e2698, 1–6. DOI: 10.17795/ajehe-2698.
  • Bohli, T.; Fiol, N.; Villaescusa, I.; Ouederni, A. Adsorption on Activated Carbon from Olive Stones: Kinetics and Equilibrium of Phenol Removal from Aqueous Solution. J. Chem. Eng. Process Technol. 2013, 4, 1000165. DOI: 10.4172/2157-7048.1000165.
  • Jin, X. J.; Zhu, Y. M. Absorption of Phenol on Nitrogen-Enriched Activated Carbon from Wood Fiberboard Waste with Chemical Activation by Potassium Carbonate. J. Chem. Eng. Process Technol. 2014, 5, 1000199. DOI: 10.4172/2157-7048.1000199.
  • Rincón-Silva, N. G.; Moreno-Piraján, J. C.; Giraldo, L. G. Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed. J. Chem. 2015, 2015, 1–12. DOI: 10.1155/2015/569403.
  • Latinwo, G. K.; Agarry, S. E. Removal of Phenol from Paint Wastewater by Adsorption onto Phosphoric Acid Activated Carbon Produced from Coconut Shell: Isothermal and Kinetic Modelling Studies. Chem. Mater. Res. 2015, 7, 123–137. https://www.iiste.org/Journals/index.php/CMR/article/view/22876/22648.
  • Hameed, B. H.; Rahman, A. A. Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Biomass Material. J. Hazard. Mater. 2008, 160, 576–581. DOI: 10.1016/j.jhazmat.2008.03.028.
  • Miao, Q.; Tang, Y.; Xu, J.; Liu, X.; Xiao, L.; Chen, Q. Activated Carbon Prepared from Soybean Straw for Phenol Adsorption. J. Taiwan Inst. Chem. Eng. 2013, 44, 458–465. DOI: 10.1016/j.jtice.2012.12.006.
  • Girods, P.; Dufour, A.; Fierro, V.; Rogaume, Y.; Rogaume, C.; Zoulalian, A.; Celzard, A. Activated Carbons Prepared from Wood Particleboard Wastes: Characterisation and Phenol Adsorption Capacities. J. Hazard. Mater. 2009, 166, 491–501. DOI: 10.1016/j.jcis.2004.06.067.
  • Tancredi, N.; Medero, N.; Moller, F.; Piriz, J.; Plada, C.; Cordero, T. Phenol Adsorption onto Powdered and Granular Activated Carbon, Prepared from Eucalyptus Wood Cordero. J. Colloid Interface Sci. 2004, 279, 357–363. DOI: 10.1016/j.jcis.2004.06.067.
  • Din, A. T. M.; Hameed, B. H.; Ahmad, A. L. Batch Adsorption of Phenol onto Physiochemical-Activated Coconut Shell. J. Hazard. Mater. 2009, 161, 1522–1529. DOI: 10.1016/j.jhazmat.2008.05.009.
  • Ozkaya, B. Adsorption and Desorption of Phenol on Activated Carbon and a Comparison of Isotherm Models. J. Hazard. Mater. 2006, 129, 158–163. DOI: 10.1016/j.jhazmat.2005.08.025.
  • Srivastava, V. C.; Swamy, M. M.; Mall, I. D.; Prasad, B.; Mishra, I. M. Adsorptive Removal of Phenol by Bagasse fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics. Colloid. Surface. A 2006, 272, 89–104. DOI: 10.1016/j.colsurfa.2005.07.016.
  • Kilic, M.; Apaydin-Varol, E.; Pütün, A. E. Adsorptive Removal of Phenol from Aqueous Solutions on Activated Carbon Prepared from Tobacco Residues: Equilibrium, Kinetics and Thermodynamics. J. Hazard. Mater. 2011, 189, 397–403. DOI: 10.1016/j.jhazmat.2011.02.051.
  • Mojoudi, N.; Soleimani, M.; Mirghaffari, N.; Belver, C.; Bedia, J. Removal of Phenol and Phosphate from Aqueous Solutions Using Activated Carbons Prepared from Oily Sludge through Physical and Chemical Activation. Water Sci. Technol. 2019, 80, 575–586. DOI: 10.2166/wst.2019.305.
  • Vázquez, I.; Rodríguez-Iglesias, J.; Marañón, E.; Castrillón, L.; Álvarez, M. Removal of Residual Phenols from Coke Wastewater by Adsorption. J. Hazard. Mater. 2007, 147, 395–400. DOI: 10.1016/j.jhazmat.2007.01.019.
  • Kumar, A.; Kumar, S.; Kumar, S.; Gupta, D. V. Adsorption of Phenol and 4-Nitrophenol on Granular Activated Carbon in Basal Salt Medium: Equilibrium and Kinetics. J. Hazard. Mater. 2007, 147, 155–166. DOI: 10.1016/j.jhazmat.2006.12.062.
  • Gundogdu, A.; Duran, C.; Senturk, H. B.; Soylak, M.; Ozdes, D.; Serencam, H.; Imamoglu, M. Adsorption of Phenol from Aqueous Solution on a Low-Cost Activated Carbon Produced from Tea Industry Waste: Equilibrium, Kinetic, and Thermodynamic Study. J. Chem. Eng. Data 2012, 57, 2733–2743. DOI: 10.1021/je300597u.
  • Lorenc-Grabowska, E. Effect of Micropore Size Distribution on Phenol Adsorption on Steam Activated Carbons. Adsorption 2016, 22, 599–607. DOI: 10.1007/s10450-015-9737-x.
  • Altenor, S.; Carene, B.; Emmanuel, E.; Lambert, J.; Ehrhardt, J. J.; Gaspard, S. Adsorption Studies of Methylene Blue and Phenol onto Vetiver Roots Activated Carbon Prepared by Chemical Activation. J. Hazard. Mater. 2009, 165, 1029–1039. DOI: 10.1016/j.jhazmat.2008.10.133.
  • Sahu, O.; Rao, D. G.; Gabbiye, N.; Engidayehu, A.; Teshale, F. Sorption of Phenol from Synthetic Aqueous Solution by Activated Saw Dust: Optimizing Parameters with Response Surface Methodology. Biochem. Biophys. Rep. 2017, 12, 46–53. DOI: 10.1016/j.bbrep.2017.08.007.
  • Yadav, N.; Maddheshiaya, D. N.; Rawat, S.; Singh, J. Adsorption and Equilibrium Studies of Phenol and Para-Nitrophenol by Magnetic Activated Carbon Synthesised from Cauliflower Waste. Environ. Eng. Res. 2019, 25, 742–752. DOI: 10.4491/eer.2019.238.
  • Feng, N.; Zhang, Y.; Fan, W.; Zhu, M. Enhancement of Methylbenzene Adsorption Capacity through Cetyl Trimethyl Ammonium Bromide-Modified Activated Carbon Derived from Astragalus Residue. IOP Conf. Ser: Earth Environ. Sci. 2018, 121, 022001. DOI: 10.1088/1755-1315/121/2/022001.
  • Kluczka, J.; Pudło, W.; Krukiewicz, K. Boron Adsorption Removal by Commercial and Modified Activated Carbons. Chem. Eng. Res. Des. 2019, 147, 30–42. DOI: 10.1016/j.cherd.2019.04.021.
  • Guzel, P.; Aydın, Y. A.; Aksoy, N. D. Removal of Chromate from Wastewater Using Amine-Based-Surfactant-Modified Clinoptilolite. Int. J. Environ. Sci. Technol. 2016, 13, 1277–1288. DOI: 10.1007/s13762-016-0954-y.
  • Wang, L. C.; Ni, X. J.; Cao, Y. H.; Cao, G. Q. Adsorption Behavior of Bisphenol a on CTAB-Modified Graphite. Appl. Surf. Sci. 2018, 428, 165–170. DOI: 10.1016/j.apsusc.2017.07.093.
  • Ceylan, Z.; Mustafaoglu, D.; Malkoc, E. Adsorption of Phenol by MMT-CTAB and WPT-CTAB: Equilibrium, Kinetic, and Thermodynamic Study. Particul. Sci. Technol. 2018, 36, 716–726. DOI: 10.1080/02726351.2017.1296047.
  • Ntakirutimana, S.; Tan, W.; Wang, Y. Enhanced Surface Activity of Activated Carbon by Surfactants Synergism. RSC Adv. 2019, 9, 26519–26531. DOI: 10.1039/C9RA04521J.
  • Liu, Y.; Liu, X.; Zhang, G.; Ma, T.; Du, T.; Yang, Y.; Lu, S.; Wang, W. Adsorptive Removal of Sulfamethazine and Sulfamethoxazole from Aqueous Solution by Hexadecyl Trimethyl Ammonium Bromide Modified Activated Carbon. Colloid. Surf. A 2019, 564, 131–141. DOI: 10.1016/j.colsurfa.2018.12.041.
  • Chatterjee, S.; Lee, D. S.; Lee, M. W.; Woo, S. H. Enhanced Adsorption of congo Red from Aqueous Solutions by Chitosan Hydrogel Beads Impregnated with Cetyl Trimethyl Ammonium Bromide. Bioresour. Technol. 2009, 100, 2803–2809. DOI: 10.1016/j.biortech.2008.12.035.
  • Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. DOI: 10.3390/w12020587.
  • Zhou, Y.; Zhang, R.; Gu, X.; Zhao, Q.; Lu, J. Sorption Characteristics of Phenanthrene and Pyrene to Surfactant-Modified Peat from Aqueous Solution: The Contribution of Partition and Adsorption. Water Sci. Technol. 2015, 71, 296–302. DOI: 10.2166/wst.2014.517.
  • Mi, X.; Li, G.; Zhu, W.; Liu, L. Enhanced Adsorption of Orange II Using Cationic Surfactant Modified Biochar Pyrolyzed from Cornstalk. J. Chem. 2016, 2016, 1–7. DOI: 10.1155/2016/8457030.
  • Farooq, W.; Hong, H. J.; Kim, E. J.; Yang, J. W. Removal of Bromate (BrO − 3) from Water Using Cationic Surfactant-Modified Powdered Activated Carbon (SM-PAC). Sep. Sci. Technol. 2012, 47, 1906–1912. DOI: 10.1080/01496395.2012.664232.
  • Ge, M.; Wang, X.; Du, M.; Liang, G.; Hu, G.; S.M, J. Adsorption Analyses of Phenol from Aqueous Solutions Using Magadiite Modified with Organo-Functional Groups: kinetic and Equilibrium Studies. Materials 2018, 12, 96–106. DOI: 10.3390/ma12010096.
  • Mondal, S.; Majumder, S. K. Honeycomb-like Porous Activated Carbon for Efficient Copper (II) Adsorption Synthesized from Natural Source: Kinetic Study and Equilibrium Isotherm Analysis. J. Environ. Chem. Eng. 2019, 7, 103236. DOI: 10.1016/j.jece.2019.103236.
  • Singh, K. P.; Malik, A.; Sinha, S.; Ojha, P. Liquid-Phase Adsorption of Phenols Using Activated Carbons Derived from Agricultural Waste Material. J. Hazard. Mater. 2008, 150, 626–641. DOI: 10.1016/j.jhazmat.2007.05.017.
  • Imache, A. E.; Ouazzani, A. The Olive Core, a Promoter Material for the Adsorption of Dyes: Effects on Certain Parameters, Kinetic and Thermodynamic Study. Orient. J. Chem. 2018, 34, 2859–2866. DOI: 10.13005/ojc/340624.
  • Ghafar, H. H. A.; Radwan, E. K.; El-Wakeel, S. T. Removal of Hazardous Contaminants from Water by Natural and Zwitterionic Surfactant-Modified Clay. ACS Omega. 2020, 5, 6834–6845. DOI: 10.1021/acsomega.0c00166.
  • Mondal, S.; Patel, S.; Majumder, S. K. Naproxen Removal Capacity Enhancement by Transforming the Activated Carbon into a Blended Composite Material. Water. Air. Soil Pollut. 2020, 231, 1–16. DOI: 10.1007/s11270-020-4411-7.
  • Xu, Q.; Vasudevan, T.; Somasundaran, P. Adsorption of Anionic-Nonionic and Cationic-Nonionic Surfactant Mixtures on Kaolinite. J. Colloid Interface Sci. 1991, 142, 528–534. . (91)90083-K DOI: 10.1016/0021-9797(91)90083-K.
  • Ma, C.; Li, G.; Xu, Y.; Wang, H.; Ye, X. Determination of the First and Second CMC of Surfactants by Absorptive Voltammetry. Colloid. Surf. A 1998, 143, 89–94. . (98)00499-3 DOI: 10.1016/S0927-7757(98)00499-3.
  • Aguiar, J.; Carpena, P.; Molina-Bolı́var, J. A.; Carnero Ruiz, C. On the Determination of the Critical Micelle Concentration by the Pyrene 1:3 Ratio Method. J. Colloid Interface Sci. 2003, 258, 116–122. . (02)00082-6 DOI: 10.1016/S0021-9797(02)00082-6.
  • Karimi, M. A.; Mozaheb, M. A.; Hatefi-Mehrjardi, A.; Tavallali, H.; Attaran, A. M.; Shamsi, R. A New Simple Method for Determining the Critical Micelle Concentration of Surfactants Using Surface Plasmon Resonance of Silver Nanoparticles. J. Anal. Sci. Technol. 2015, 6, 1–8. DOI: 10.1186/s40543-015-0077-y.
  • Graca, M.; Bongaerts, J. H.; Stokes, J. R.; Granick, S. Friction and Adsorption of Aqueous Polyoxyethylene (Tween) Surfactants at Hydrophobic Surfaces. J Colloid Interface Sci. 2007, 315, 662–670. DOI: 10.1016/j.jcis.2007.06.057.
  • Moreno-Castilla, C. Adsorption of Organic Molecules from Aqueous Solutions on Carbon Materials. Carbon 2004, 42, 83–94. DOI: 10.1016/j.carbon.2003.09.022.
  • Wang, X. Preparation of Magnetic Hydroxyapatite and Their Use as Recyclable Adsorbent for Phenol in Wastewater. Clean Soil. Air. Water 2011, 39, 13–20. DOI: 10.1002/clen.201000241.
  • Munagapati, V. S.; Wen, H.-Y.; Wen, Z. –C.; Gutha, Y.; Tian, Z.; Reddy, G. M.; Garcia, J. R. Anionic congo Red Dye Removal from Aqueous Medium Using Turkey Tail (Trametes Versicolor) Fungal Biomass: adsorption Kinetics, Isotherms, Thermodynamics, Reusability, and Characterization. J. Dispers. Sci. Technol. 2020. DOI: 10.1080/01932691.2020.1789468.
  • Karimi, M. A.; Behjatmanesh-Ardakani, R.; Goudi, A. A.; Zali, S. Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for the Separation and Preconcentration of Cationic Surfactants Prior to Their Quantitation by Spectrophotometric Method. J. Braz. Chem. Soc. 2008, 19, 1523–1530. DOI: 10.1590/S0103-50532008000800011.
  • Zohra, B.; Aicha, K.; Fatima, S.; Nourredine, B.; Zoubir, D. Adsorption of Direct Red 2 on Bentonite Modified by Cetyltrimethylammonium Bromide. Chem. Eng. J. 2008, 136, 295–305. DOI: 10.1016/j.cej.2007.03.086.
  • Luz-Asunción, M.; Sánchez-Mendieta, V.; Martínez-Hernández, A. L.; Castaño, V. M.; Velasco-Santos, C. Adsorption of Phenol from Aqueous Solutions by Carbon Nanomaterials of One and Two Dimensions: kinetic and Equilibrium Studies. J. Nanomater. 2015, 2015, 1–14. DOI: 10.1155/2015/405036.
  • Mondal, S.; Patel, S.; Majumder, S. K. Bio-Extract Assisted In-Situ Green Synthesis of Ag-RGO Nanocomposite Film for Enhanced Naproxen Removal. Korean J. Chem. Eng. 2020, 37, 274–289. DOI: 10.1007/s11814-019-0435-3.
  • Lu, C.; Liu, C.; Rao, G. P. Comparisons of Sorbent Cost for the Removal of Ni2+ from Aqueous Solution by Carbon Nanotubes and Granular Activated Carbon. J. Hazard. Mater. 2008, 151, 239–246. DOI: 10.1016/j.jhazmat.2007.05.078.
  • Akpomie, K. G.; Conradie, J. Banana Peel as a Biosorbent for the Decontamination of Water Pollutants. A Review. Environ. Chem. Lett. 2020, 18, 1085–1112. DOI: 10.1007/s10311-020-00995-x.
  • Ge, X.; Wu, Z.; Manzoli, M.; Wu, Z.; Cravotto, G. Feasibility and the Mechanism of Desorption of Phenolic Compounds from Activated Carbons. Ind. Eng. Chem. Res. 2020, 59, 12223–12231. DOI: 10.1021/acs.iecr.0c01402.
  • Mondal, N. K.; Kar, S. Potentiality of Banana Peel for Removal of congo Red Dye from Aqueous Solution: Isotherm, Kinetics and Thermodynamics Studies. Appl. Water Sci. 2018, 8, 157. DOI: 10.1007/s13201-018-0811-x.
  • Cho, D.-W.; Chon, C.-M.; Kim, Y.; Jeon, B.-H.; Schwartz, F. W.; Lee, E.-S.; Song, H. Adsorption of Nitrate and Cr(VI) by Cationic Polymer-Modified Granular Activated Carbon. Chem. Eng. J. 2011, 175, 298–305. DOI: 10.1016/j.cej.2011.09.108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.