291
Views
6
CrossRef citations to date
0
Altmetric
Articles

Complex coacervation of carboxymethyl konjac glucomannan and ovalbumin and coacervate characterization

, , , & ORCID Icon
Pages 1991-2001 | Received 22 Oct 2020, Accepted 07 Feb 2021, Published online: 22 Feb 2021

References

  • Zhang, C.; Chen, J. D.; Yang, F. D. Konjac Glucomannan, a Promising Polysaccharide for OCDDS. Carbohydr. Polym. 2014, 104, 175–181. DOI: 10.1016/j.carbpol.2013.12.081.
  • Behera, S. S.; Ray, R. C. Konjac Glucomannan, a Promising Polysaccharide of Amorphophallus Konjac K. Koch in Health Care. Int. J. Biol. Macromol. 2016, 92, 942–956. DOI: 10.1016/j.ijbiomac.2016.07.098.
  • Penroj, P.; Mitchell, J. R.; Hill, S. E.; Ganjanagunchorn, W. Effect of Konjac Glucomannan Deacetylation on the Properties of Gels Formed from Mixtures of Kappa Carrageenan and Konjac Glucomannan. Carbohydr. Polym 2005, 59, 367–376. DOI: 10.1016/j.carbpol.2004.10.007.
  • Hongbo, T.; Lan, W.; Yanping, L.; Siqing, D. Effect of Acidolysis and Oxidation on Structure and Properties of Konjac Glucomannan. Int. J. Biol. Macromol. 2019, 130, 378–387. DOI: 10.1016/j.ijbiomac.2019.02.048.
  • Xiao, M.; Dai, S.; Wang, L.; Ni, X.; Yan, W.; Fang, Y.; Corke, H.; Jiang, F. Carboxymethyl Modification of Konjac Glucomannan Affects Water Binding Properties. Carbohydr. Polym. 2015, 130, 1–8. DOI: 10.1016/j.carbpol.2015.05.001.
  • Jian, W.; Tu, L.; Wu, L.; Xiong, H.; Pang, J.; Sun, Y. M. Physicochemical Properties and Cellular Protection against Oxidation of Degraded Konjac Glucomannan Prepared by γ-Irradiation. Food Chem. 2017, 231, 42–50. DOI: 10.1016/j.foodchem.2017.03.121.
  • Wang, L. H.; Huang, G. Q.; Xu, T. C.; Xiao, J. X. Characterization of Carboxymethylated Konjac Glucomannan for Potential Application in Colon-Targeted Delivery. Food Hydrocoll 2019, 94, 354–362. DOI: 10.1016/j.foodhyd.2019.03.045.
  • Shi, C.; Zhu, P.; Chen, N.; Ye, X.; Wang, Y.; Xiao, S. Preparation and Sustainable Release of Modified Konjac Glucomannan/Chitosan Nanospheres. Int. J. Biol. Macromol. 2016, 91, 609–614. DOI: 10.1016/j.ijbiomac.2016.05.073.
  • Wang, L.; Xiao, M.; Dai, S.; Song, J.; Ni, X.; Fang, Y.; Corke, H.; Jiang, F. Interactions between Carboxymethyl Konjac Glucomannan and Soy Protein Isolate in Blended Films. Carbohydr. Polym. 2014, 101, 136–145. DOI: 10.1016/j.carbpol.2013.09.028.
  • Xiao, J. X.; Wang, L. H.; Xu, T. C.; Huang, G. Q. Complex Coacervation of Carboxymethyl Konjac Glucomannan and Chitosan and Coacervate Characterization. Int. J. Biol. Macromol. 2019, 123, 436–445. DOI: 10.1016/j.ijbiomac.2018.11.086.
  • Zou, W.; Mourad, F. K.; Zhang, X.; Ahn, D. U.; Cai, Z.; Jin, Y. Phase Separation Behavior and Characterization of Ovalbumin and Propylene Glycol Alginate Complex Coacervates. Food Hydrocoll 2020, 108, 105978. DOI: 10.1016/j.foodhyd.2020.105978.
  • Xiong, W.; Ren, C.; Tian, M.; Yang, X.; Li, J.; Li, B. Complex Coacervation of Ovalbumin-Carboxymethylcellulose Assessed by Isothermal Titration Calorimeter and Rheology: Effect of Ionic Strength and Charge Density of Polysaccharide. Food Hydrocoll 2017, 73, 41–50. DOI: 10.1016/j.foodhyd.2017.06.031.
  • Turgeon, S. L.; Schmitt, C.; Sanchez, C. Protein–Polysaccharide Complexes and Coacervates. Curr. Opin. Colloid Interface Sci 2007, 12, 166–178. DOI: 10.1016/j.cocis.2007.07.007.
  • Kalliola, S.; Repo, E.; Srivastava, V.; Heiskanen, J. P.; Sirviö, J. A.; Liimatainen, H.; Sillanpää, M. The pH Sensitive Properties of Carboxymethyl Chitosan Nanoparticles Cross-Linked with Calcium Ions. Colloids Surf B Biointerfaces 2017, 153, 229–236. DOI: 10.1016/j.colsurfb.2017.02.025.
  • Eghbal, N.; Choudhary, R. Complex Coacervation: Encapsulation and Controlled Release of Active Agents in Food Systems. Lwt 2018, 90, 254–264. DOI: 10.1016/j.lwt.2017.12.036.
  • Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.; De Kruif, C. G. Complexation of Whey Proteins with Carrageenan. J Agric Food Chem .. 2004, 52, 3550–3555. DOI: 10.1021/jf034969t.
  • Girard, M.; Turgeon, S. L.; Gauthier, S. F. Interbiopolymer Complexing between β-Lactoglobulin and Low- and High-Methylated Pectin Measured by Potentiometric Titration and Ultrafiltration. Food Hydrocoll 2002, 16, 585–591. DOI: 10.1016/S0268-005X(02)00020-6.
  • Li, Z.; Kuang, H.; Yang, J.; Hu, J.; Ding, B.; Sun, W.; Luo, Y. Improving Emulsion Stability Based on Ovalbumin-Carboxymethyl Cellulose Complexes with Thermal Treatment near Ovalbumin Isoelectric Point. Sci. Rep. 2020, 10, 3456 DOI: 10.1038/s41598-020-60455-y.
  • Chen, Y.; Hu, J.; Yi, X.; Ding, B.; Sun, W.; Yan, F.; Wei, S.; Li, Z. Interactions and Emulsifying Properties of Ovalbumin with Tannic Acid. Lwt 2018, 95, 282–288. DOI: 10.1016/j.lwt.2018.04.088.
  • Schmitt, C.; Turgeon, S. L. Protein/polysaccharide complexes and coacervates in food systems . Adv. Colloid Interface Sci. 2011, 167, 63–70. DOI: 10.1016/j.cis.2010.10.001.
  • Wang, L.; Lin, L.; Pang, J. A Novel Glucomannan Incorporated Functionalized Carbon Nanotube Films: Synthesis, Characterization and Antimicrobial Activity. Carbohydr. Polym. 2020, 245, 116619 DOI: 10.1016/j.carbpol.2020.116619.
  • Niu, F.; Kou, M.; Fan, J.; Pan, W.; Feng, Z. J.; Su, Y.; Yang, Y.; Zhou, W. Structural Characteristics and Rheological Properties of ovalbumin-gum arabic complex coacervates . Food Chem. 2018, 260, 1–6. DOI: 10.1016/j.foodchem.2018.03.141.
  • Ghobadi, M.; Koocheki, A.; Varidi, M. J.; Varidi, M. Fabrication and Characterization of Grass Pea (Lathyrus Sativus) Protein isolate-Alyssum Homolocarpum Seed Gum Complex Coacervate. Polym. Test 2020, 89, 106636. DOI: 10.1016/j.polymertesting.2020.106636.
  • Wei, Z.; Cheng, Y.; Huang, Q. Heteroprotein Complex Formation of Ovotransferrin and Lysozyme: Fabrication of Food-Grade Particles to Stabilize Pickering Emulsions. Food Hydrocoll 2019, 96, 190–200. DOI: 10.1016/j.foodhyd.2019.05.024.
  • Adal, E.; Sadeghpour, A.; Connell, S.; Rappolt, M.; Ibanoglu, E.; Sarkar, A. Heteroprotein Complex Formation of Bovine Lactoferrin and Pea Protein Isolate: A Multiscale Structural Analysis. Biomacromolecules 2017, 18, 625–635. DOI: 10.1021/acs.biomac.6b01857.
  • Teo, A.; Dimartino, S.; Lee, S. J.; Goh, K. K. T.; Wen, J.; Oey, I.; Ko, S.; Kwak, H. S. Interfacial Structures of Whey Protein Isolate (WPI) and Lactoferrin on Hydrophobic Surfaces in a Model System Monitored by Quartz Crystal Microbalance with Dissipation (QCM-D) and Their Formation on Nanoemulsions. Food Hydrocoll 2016, 56, 150–160. DOI: 10.1016/j.foodhyd.2015.12.002.
  • Messina, G. M. L.; Satriano, C.; Marletta, G. A Multitechnique Study of Preferential Protein Adsorption on Hydrophobic and Hydrophilic Plasma-Modified Polymer Surfaces. Colloids Surf B Biointerfaces 2009, 70, 76–83. DOI: 10.1016/j.colsurfb.2008.12.013.
  • Mohan, T.; Findenig, G.; Höllbacher, S.; Cerny, C.; Ristić, T.; Kargl, R.; Spirk, S.; Maver, U.; Stana-Kleinschek, K.; Ribitsch, V. Interaction and Enrichment of Protein on Cationic Polysaccharide Surfaces. Colloids Surf B Biointerfaces 2014, 123, 533–541. DOI: 10.1016/j.colsurfb.2014.09.053.
  • Chen, Q.; Xu, S.; Liu, Q.; Masliyah, J.; Xu, Z. QCM-D Study of Nanoparticle Interactions. Adv Colloid Interface Sci . 2016, 233, 94–114. DOI: 10.1016/j.cis.2015.10.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.