258
Views
0
CrossRef citations to date
0
Altmetric
Articles

High strength PVA/poly (AACA-co-DMC) hydrogels self-healing in both alkali and acid solutions

, , , , &
Pages 2011-2020 | Received 20 Oct 2020, Accepted 03 Apr 2021, Published online: 04 Aug 2021

References

  • Li, X.; Yang, Q.; Zhao, Y.; Long, S.; Zheng, J. Dual Physically Crosslinked Double Network Hydrogels with High Toughness and Self-Healing Properties. Soft Matter 2017, 13, 911–920. DOI: 10.1039/c6sm02567f.
  • Yang, Q.; Wang, P.; Zhao, C.; Wang, W.; Yang, J.; Liu, Q. Light-Switchable Self-Healing Hydrogel Based on Host-Guest Macro-Crosslinking. Macromol. Rapid Commun. 2017, 38, 1600741. DOI: 10.1002/marc.201600741.
  • Jing, X.; Mi, H.-Y.; Lin, Y.-J.; Enriquez, E.; Peng, X.-F.; Turng, L.-S. Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2018, 10, 20897–20909. DOI: 10.1021/acsami.8b06475.
  • Zhang, E.; Wang, T.; Zhao, L.; Sun, W.; Liu, X.; Tong, Z. Fast Self-Healing of Graphene Oxide-Hectorite Clay-Poly(N,N-Dimethylacrylamide) Hybrid Hydrogels Realized by Near-Infrared Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 22855–22861. DOI: 10.1021/am507100m.
  • Taylor, D. L.; In Het Panhuis, M. Self-Healing Hydrogels. Adv. Mater. 2016, 28, 9060–9093. DOI: 10.1002/adma.201601613.
  • Deng, Z.; Hu, T.; Lei, Q.; He, J.; Ma, P. X.; Guo, B. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. ACS Appl. Mater. Interfaces 2019, 11, 6796–6808. DOI: 10.1021/acsami.8b20178.
  • Lu, B.; Lin, F.; Jiang, X.; Cheng, J.; Lu, Q.; Song, J.; Chen, C.; Huang, B. One-Pot Assembly of Microfibrillated Cellulose Reinforced PVA-Borax Hydrogels with Self-Healing and pH-Responsive Properties. ACS Sustain. Chem. Eng. 2016, 5, 948–956. DOI: 10.1021/acssuschemeng.6b02279.
  • Xing, L.; Li, Q.; Zhang, G.; Zhang, X.; Liu, F.; Liu, L.; Huang, Y.; Wang, Q. Self-Healable Polymer Nanocomposites Capable of Simultaneously Recovering Multiple Functionalities. Adv. Funct. Mater. 2016, 26, 3524–3531. DOI: 10.1002/adfm.201505305.
  • Wu, J.; Cai, L. H.; Weitz, D. A. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. Adv. Mater. 2017, 29, 1702616. DOI: 10.1002/adma.201702616.
  • Wang, H.; Liu, H.; Cao, Z.; Li, W.; Huang, X.; Zhu, Y.; Ling, F.; Xu, H.; Wu, Q.; Peng, Y.; et al. Room-Temperature Autonomous Self-Healing Glassy Polymers with Hyperbranched Structure. Proc. Natl. Acad. Sci. USA 2020, 117, 11299–11305. DOI: 10.1073/pnas.2000001117.
  • Li, G.; Wu, J.; Wang, B.; Yan, S.; Zhang, K.; Ding, J.; Yin, J. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-Glutamic Acid). Biomacromolecules 2015, 16, 3508–3518. DOI: 10.1021/acs.biomac.5b01287.
  • Deng, Z.; Wang, H.; Ma, P. X.; Guo, B. Self-Healing Conductive Hydrogels: Preparation, Properties and Applications. Nanoscale 2020, 12, 1224–1246. DOI: 10.1039/c9nr09283h.
  • Shafiq, Z.; Cui, J.; Pastor-Pérez, L.; San Miguel, V.; Gropeanu, R. A.; Serrano, C.; del Campo, A. Bioinspired Underwater Bonding and Debonding on Demand. Angew. Chem. Int. Ed. 2012, 51, 4332–4335. DOI: 10.1002/ange.201108629.
  • Can, V.; Kochovski, Z.; Reiter, V.; Severin, N.; Siebenbürger, M.; Kent, B.; Just, J.; Rabe, P.; Ballauff, M.; Okay, O. Nanostructural Evolution and Self-Healing Mechanism of Micellar Hydrogels. Macromolecules 2016, 49, 2281–2287. DOI: 10.1021/acs.macromol.6b00156.
  • Peng, Y.; Zhao, L.; Yang, C.; Yang, Y.; Song, C.; Wu, Q.; Huang, G.; Wu, J. Super Tough and Strong Self-Healing Elastomers Based on Polyampholytes. J. Mater. Chem. A 2018, 6, 19066–19074. DOI: 10.1039/C8TA06561F.
  • Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv. Mater. 2017, 29, 1700533. DOI: 10.1002/adma.201700533.
  • Ihsan, A. B.; Sun, T. L.; Kurokawa, T.; Karobi, S. N.; Nakajima, T.; Nonoyama, T.; Roy, C. K.; Luo, F.; Gong, J. P. Self-Healing Behaviors of Tough Polyampholyte Hydrogels. Macromolecules 2016, 49, 4245–4252. DOI: 10.1021/acs.macromol.6b00437.
  • Chao, A.; Negulescu, I.; Zhang, D. Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent. Macromolecules 2016, 49, 6277–6284. DOI: 10.1021/acs.macromol.6b01443.
  • Tuncaboylu, D. C.; Sari, M.; Oppermann, W.; Okay, O. Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions. Macromolecules 2011, 44, 4997–5005. DOI: 10.1021/ma200579v.
  • Chen, W.-P.; Hao, D.-Z.; Hao, W.-J.; Guo, X.-L.; Lei, J. Hydrogel with Ultrafast Self-Healing Property Both in Air and Underwater. ACS Appl. Mater. Interfaces 2017, 10, 1258–1265. DOI: 10.1021/acsami.7b17118.
  • Deng, Z.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. Multifunctional Stimuli-Responsive Hydrogels with Self-Healing, High Conductivity, and Rapid Recovery through Host–Guest Interactions. Chem. Mater. 2018, 30, 1729–1742. DOI: 10.1021/acs.chemmater.8b00008.
  • He, J.; Shi, M.; Liang, Y.; Guo, B. Conductive Adhesive Self-Healing Nanocomposite Hydrogel Wound Dressing for Photothermal Therapy of Infected Full-Thickness Skin Wounds. Chem. Eng. J. 2020, 394, 124888. DOI: 10.1016/j.cej.2020.124888.
  • Feng, C.; Lü, S.; Gao, C.; Wang, X.; Xu, X.; Bai, X.; Gao, N.; Liu, M.; Wu, L. Smart” Fertilizer with Temperature- and pH-Responsive Behavior via Surface-Initiated Polymerization for Controlled Release of Nutrients. ACS Sustain. Chem. Eng. 2015, 3, 3157–3166. DOI: 10.1021/acssuschemeng.5b01384.
  • Qi, H.; Mäder, E.; Liu, J. Electrically Conductive Aerogels Composed of Cellulose and Carbon Nanotubes. J. Mater. Chem. A 2013, 1, 9714. DOI: 10.1039/c3ta11734k.
  • Anjum, S.; Gurave, P.; Badiger, M. V.; Torris, A.; Tiwari, N.; Gupta, B. Design and Development of Trivalent Aluminum Ions Induced Self-Healing Polyacrylic Acid Novel Hydrogels. Polymer 2017, 126, 196–205. DOI: 10.1016/j.polymer.2017.08.045.
  • Cong, H.-P.; Wang, P.; Yu, S.-H. Stretchable and Self-Healing Graphene OxidePolymer Composite Hydrogels: A Dual Network Design. Chem. Mater. 2013, 25, 3357–3362. DOI: 10.1021/cm401919c.
  • Liu, S.; Qiu, Y.; Yu, W.; Zhang, H. Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring. ACS Appl. Polym. Mater. 2020, 2, 1325–1334. DOI: 10.1021/acsapm.9b01200.
  • Lawrence, M. B.; Abbas, S.; Aswal, V. K. Structure of Polyvinyl Alcohol-Borax Ferrogels: A Small Angle Neutron Acattering Study. J. Polym. Res. 2018, 25, 36. DOI: 10.1007/s10965-017-1435-9.
  • Chung, W. Y.; Lee, S. M.; Koo, S. M.; Suh, D. H. Surfactant-Free Thermochromic Hydrogel System: PVA/Borax Gel Networks Containing pH-Sensitive Dyes. J. Appl. Polym. Sci. 2004, 91, 890–893. DOI: 10.1002/app.13272.
  • Lee, S. M.; Chung, W. Y.; Kim, J. K.; Suh, D. H. A Novel Fluorescence Temperature Sensor Based on a Surfactant-Free PVA/Borax/2-Naphthol Hydrogel Network System. J. Appl. Polym. Sci. 2004, 93, 2114–2118. DOI: 10.1002/app.20688.
  • Han, J.; Lei, T.; Wu, Q. Facile Preparation of Mouldable Polyvinyl Alcohol-Borax Hydrogels Reinforced by Well-Dispersed Cellulose Nanoparticles: Physical, Viscoelastic and Mechanical Properties. Cellulose 2013, 20, 2947–2958. DOI: 10.1007/s10570-013-0082-5.
  • Otero Areán, C. Dinitrogen and Carbon Monoxide Hydrogen Bonding in Protonic Zeolites: Studies from Variable-Temperature Infrared Spectroscopy. J. Mol. Struct. 2008, 880, 31–37. DOI: 10.1016/j.molstruc.2007.11.004.
  • Guo, P.; Liang, J.; Li, Y.; Lu, X.; Fu, H.; Jing, H.; Guan, S.; Han, D.; Niu, L. High-Strength and pH-Responsive Self-Healing Polyvinyl Alcohol/Poly 6-Acrylamidohexanoic Acid Hydrogel Based on Dual Physically Cross-Linked Network. Colloids Surf. A 2019, 571, 64–71. DOI: 10.1016/j.colsurfa.2019.03.027.
  • Kaith, B.; Kumar, K. In Vacuum Synthesis of Psyllium and Acrylic Acid Based Hydrogels for Selective Water Absorption from Different Oil–Water Emulsions. Desalination 2008, 229, 331–341. DOI: 10.1016/j.desal.2007.08.020.
  • Manna, U.; Patil, S. Borax Mediated Layer-by-Layer Self-Assembly of Neutral Poly(Vinyl Alcohol) and Chitosan. J. Phys. Chem. B 2009, 113, 9137–9142. DOI: 10.1021/jp9025333.
  • Gao, S.; Guo, J.; Nishinari, K. Thermoreversible Konjac Glucomannan Gel Crosslinked by Borax. Carbohydr. Polym. 2008, 72, 315–325. DOI: 10.1016/j.carbpol.2007.08.015.
  • Han, J.; Lei, T.; Wu, Q. High-Water-Content Mouldable Polyvinyl Alcohol-Borax Hydrogels Reinforced by Well-Dispersed Cellulose Nanoparticles: Dynamic Rheological Properties and Hydrogel Formation Mechanism. Carbohydr. Polym. 2014, 102, 306–316. DOI: 10.1016/j.carbpol.2013.11.045.
  • Bian, H.; Jiao, L.; Wang, R.; Wang, X.; Zhu, W.; Dai, H. Lignin Nanoparticles as Nano-Spacers for Tuning the Viscoelasticity of Cellulose Nanofibril Reinforced Polyvinyl Alcohol-Borax Hydrogel. Eur. Polym. J. 2018, 107, 267–274. DOI: 10.1016/j.eurpolymj.2018.08.028.
  • Qin, Y.; Wang, J.; Qiu, C.; Xu, X.; Jin, Z. A Dual Cross-Linked Strategy to Construct Moldable Hydrogels with High Stretchability, Good Self-Recovery, and Self-Healing Capability. J. Agric. Food Chem. 2019, 67, 3966–3980. DOI: 10.1021/acs.jafc.8b05147.
  • Ge, W.; Cao, S.; Shen, F.; Wang, Y.; Ren, J.; Wang, X. Rapid Self-Healing, Stretchable, Moldable, Antioxidant and Antibacterial Tannic Acid-Cellulose Nanofibril Composite Hydrogels. Carbohydr. Polym. 2019, 224, 115147. DOI: 10.1016/j.carbpol.2019.115147.
  • Jing, Z.; Xu, A.; Liang, Y.-Q.; Zhang, Z.; Yu, C.; Hong, P.; Li, Y. Biodegradable Poly(Acrylic Acid-co-Acrylamide)/Poly(Vinyl Alcohol) Double Network Hydrogels with Tunable Mechanics and High Self-Healing Performance. Polymers-Basel 2019, 11, 952. DOI: 10.3390/polym11060952.
  • Bao, Y.; Ma, J.; Li, N. Synthesis and Swelling Behaviors of Sodium Carboxymethyl Cellulose-g-Poly(AA-co-AM-co-AMPS)/MMT Superabsorbent Hydrogel. Carbohydr. Polym. 2011, 84, 76–82. DOI: 10.1016/j.carbpol.2010.10.061.
  • Huang, S.; Shuyi, S.; Gan, H.; Linjun, W.; Lin, C.; Danyuan, X.; Zhou, H.; Lin, X.; Qin, Y. Facile Fabrication and Characterization of Highly Stretchable Lignin-Based Hydroxyethyl Cellulose Self-Healing Hydrogel. Carbohydr. Polym. 2019, 223, 115080. DOI: 10.1016/j.carbpol.2019.115080.
  • Huang, M.; Hou, Y.; Li, Y.; Wang, D.; Zhang, L. High Performances of Dual Network PVA Hydrogel Modified by PVP Using Borax as the Structure-Forming Accelerator. Des. Monomers Polym. 2017, 20, 505–513. DOI: 10.1080/15685551.2017.1382433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.