341
Views
8
CrossRef citations to date
0
Altmetric
Articles

Innovation and improvement in food fortification: Microencapsulation of vitamin B2 and B3 by a spray-drying method and evaluation of the simulated release profiles

, ORCID Icon &
Pages 2179-2191 | Received 27 Jan 2021, Accepted 24 Apr 2021, Published online: 06 Jun 2021

References

  • Ribeiro, A. M.; Shahgol, M.; Estevinho, B. N.; Rocha, F. Microencapsulation of Vitamin a by Spray-Drying, Using Binary and Ternary Blends of Gum Arabic, Starch and Maltodextrin. Food Hydrocoll. 2020, 108, 106029.
  • Apaolaza, V.; Hartmann, P.; D’Souza, C.; López, C. M. Eat Organic – Feel Good? The Relationship Between Organic Food Consumption, Health Concern and Subjective Wellbeing. Food Qual. Prefer. 2018, 63, 51–62. DOI: 10.1016/j.foodqual.2017.07.011.
  • Lucas, J.; Ralaivao, M.; Estevinho, B. N.; Rocha, F. A New Approach for the Microencapsulation of Curcumin by a Spray Drying Method, in Order to Value Food Products. Powder Technol. 2020, 362, 428–435. DOI: 10.1016/j.powtec.2019.11.095.
  • Mannar, M. G. V.; Garrett, G. S.; Hurrell, R. F. Future Trends and Strategies in Food Fortification. Food Fortif. A Glob. World 2018, 375–381. DOI: 10.1016/B978-0-12-802861-2.00040-7.
  • Teleki, A.; Hitzfeld, A.; Eggersdorfer, M. 100 Years of Vitamins: The Science of Formulation is the Key to Functionality. KONA 2013, 30, 144–163. DOI: 10.14356/kona.2013015.
  • Kirkland, J. B.; Meyer-Ficca, M. L. Niacin. 2018, 83, 83–149. DOI: 10.1016/bs.afnr.2017.11.003.
  • Saedisomeolia, A.; Ashoori, M. Riboflavin in Human Health: A Review of Current Evidences, 1st ed.; Elsevier Inc., 2018; Vol. 83. DOI: 10.1016/bs.afnr.2017.11.002.
  • Yang, Y.; Sauve, A. A. Biochimica et Biophysica Acta NAD + Metabolism: Bioenergetics, Signaling and Manipulation for Therapy. Biochim. Biophys. Acta 2016, 1864, 1787–1800. DOI: 10.1016/j.bbapap.2016.06.014.
  • Combs, G. F. The Vitamins. Fundamental Aspects in Nutrition and Health, 3rd ed.; Elsevier Academic Press: Ithaca, NY, 2008.
  • Golbach, J. L.; Ricke, S. C.; O’Bryan, C. A.; Crandall, P. G. Riboflavin in Nutrition, Food Processing, and Analysis – A Review. JFR 2014, 3, 23. DOI: 10.5539/jfr.v3n6p23.
  • Rajakumari, R.; Oluwafemi, O. S.; Thomas, S.; Kalarikkal, N. Dietary Supplements Containing Vitamins and Minerals: Formulation, Optimization and Evaluation. Powder Technol. 2018, 336, 481–492. DOI: 10.1016/j.powtec.2018.06.026.
  • Ashoori, M.; Saedisomeolia, A. Riboflavin (Vitamin B2) and Oxidative Stress: A Review. Br. J. Nutr. 2014, 111, 1985–1991. DOI: 10.1017/S0007114514000178.
  • Samaniego-Vaesken, M. D. L.; Alonso-Aperte, E.; Varela-Moreiras, G. Vitamin Food Fortification Today. 2012, 1, 1–9. DOI: 10.3402/fnr.v56i0.5459.
  • Aditya, N. P.; Espinosa, Y. G.; Norton, I. T. Encapsulation Systems for the Delivery of Hydrophilic Nutraceuticals: Food Application. Biotechnol. Adv. 2017, 35, 450–457. DOI: 10.1016/j.biotechadv.2017.03.012.
  • Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of Active Ingredients in Functional Foods: From Research Stage to Commercial Food Products. Trends Food Sci. Technol 2018, 78, 167–179. DOI: 10.1016/j.tifs.2018.05.025.
  • Bajpai, S. K.; Sharma, S. Dynamic Release of Riboflavin from Ethyl Cellulose Coated Barium Alginate Beads for Gastrointestinal Drug Delivery: An In Vitro Study. J. Macromol. Sci. Part A 2005, 42, 649–661. DOI: 10.1081/MA-200056391.
  • Abd El-Hay, A. M.; Naser, A. M.; Badawi, A.; Abd El-Ghaffar, M. A.; Abd El-Wahab, H.; Helal, D. A. Biodegradable Polymeric Microcapsules for Sustained Release of Riboflavin. Int. J. Biol. Macromol. 2016, 92, 708–714. DOI: 10.1016/j.ijbiomac.2016.07.076.
  • Uluata, S.; McClements, D. J.; Decker, E. A. Riboflavin-Induced Oxidation in Fish Oil-in-Water Emulsions: Impact of Particle Size and Optical Transparency. Food Chem. 2016, 213, 457–461. DOI: 10.1016/j.foodchem.2016.06.103.
  • Bou, R.; Cofrades, S.; Jiménez-Colmenero, F. Physicochemical Properties and Riboflavin Encapsulation in Double Emulsions with Different Lipid Sources. LWT – Food Sci. Technol. 2014, 59, 621–628. DOI: 10.1016/j.lwt.2014.06.044.
  • O’Neill, G. J.; Egan, T.; Jacquier, J. C.; O’Sullivan, M.; Dolores O’Riordan, E. Kinetics of Immobilisation and Release of Tryptophan, Riboflavin and Peptides from Whey Protein Microbeads. Food Chem. 2015, 180, 150–155. DOI: 10.1016/j.foodchem.2015.01.131.
  • Talukder, R.; Fassihi, R. Gastroretentive Delivery Systems: Hollow Beads. Drug Dev. Ind. Pharm. 2004, 30, 405–412. DOI: 10.1081/ddc-120030935.
  • Zhimin, H.; Xiqing, Z.; Wei, Q.; Renliang, H.; Rongxin, H. Alginate-Casein Microspheres as Bioactive Vehicles for Nutrients. Trans. Tianjin Univ. 2015, 21, 383–391. DOI: 10.1007/s12209-015-2692-5.
  • Cuadra, I. A.; Cabañas, A.; Cheda, J. A. R.; Martínez-Casado, F. J.; Pando, C. Pharmaceutical Co-Crystals of the anti-in Fl Ammatory Drug Di Fl Unisal and Nicotinamide Obtained Using Supercritical CO2 as an Antisolvent. Biochem. Pharmacol. 2016, 13, 29–37. DOI: 10.1016/j.jcou.2015.11.006.
  • Hecht, N.; Terveer, N.; Schollmayer, C.; Holzgrabe, U.; Meinel, L. European Journal of Pharmaceutics and Biopharmaceutics Opening NADPH Oxidase Inhibitors for In Vivo Translation. Eur. J. Pharm. Biopharm. 2017, 115, 206–217. DOI: 10.1016/j.ejpb.2017.03.001.
  • Maravajhala, V.; Dasari, N.; Sepuri, A.; Joginapalli, S. Design and Evaluation of Niacin Microspheres. Ind. J. Pharm. Sci. 2009, 71, 663–669. DOI: 10.4103/0250-474X.59549.
  • Serrano, D. R.; Walsh, D.; Connell, P. O.; Mugheirbi, N. A.; Worku, Z. A.; Bolas-Fernandez, F.; Galiana, C.; Ayuela, A. D.; Healy, A. M.; Healy, A. M. Optimising the In Vitro and In Vivo Performance of Oral Cocrystal Formulations via Spray Coating. Eur. J. Pharm. Biopharm. 2017. DOI: 10.1016/j.ejpb.2017.11.015.
  • Williams, A. K.; Hupp, J. T. Sol-Gel-Encapsulated Alcohol Dehydrogenase as a Versatile, Environmentally Stabilized Sensor for Alcohols and Aldehydes. 1998, 3, 4366–4371.
  • Estevinho, B. N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with Chitosan by Spray Drying for Industry Applications – A Review. Trends Food Sci. Technol. 2013, 31. DOI: 10.1016/j.tifs.2013.04.001.
  • Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. DOI: 10.1007/s12393-014-9106-7.
  • Murugesan, R.; Orsat, V. Spray Drying for the Production of Nutraceutical Ingredients – A Review. 2012, 3–14. DOI: 10.1007/s11947-011-0638-z.
  • Prameela, K.; Mohan, C. M.; Ramakrishna, C. Consumer-Friendly Natural Ingredients; Elsevier Inc., 2018. DOI: 10.1016/B978-0-12-811449-0/00001-3.
  • Ye, Q.; Woo, M. W.; Selomulya, C. Modification of Molecular Conformation of Spray-Dried Whey Protein Microparticles Improving Digestibility and Release Characteristics. Food Chem. 2019, 280, 255–261. DOI: 10.1016/j.foodchem.2018.12.074.
  • Stout, M. A.; Park, C. W.; Drake, M. A. The Effect of Bleaching Agents on the Degradation of Vitamins and Carotenoids in Spray-Dried Whey Protein Concentrate. J Dairy Sci. 2017, 100, 7922–7932. DOI: 10.3168/jds.2017-12929.
  • de Farias, S. S.; Siqueira, S. M. C.; Cunha, A. P.; de Souza, C. A. G.; dos Santos Fontenelle, R. O.; de Araújo, T. G.; de Amorim, A. F. V.; de Menezes, J. E. S. A.; de Morais, S. M.; Ricardo, N. M. P. S. Microencapsulation of Riboflavin with Galactomannan Biopolymer and F127: Physico-Chemical Characterization, Antifungal Activity and Controlled Release. Ind. Crops Prod. 2018, 118, 271–281. DOI: 10.1016/j.indcrop.2018.03.039.
  • Montenegro, M. A.; Nunes, I. L.; Mercadante, A. Z.; Borsarelli, C. D. Photoprotection of Vitamins in Skimmed Milk by an Aqueous Soluble Lycopene-Gum Arabic Microcapsule. J. Agric. Food Chem. 2007, 55, 323–329. DOI: 10.1021/jf0622883.
  • Boiero, M. L.; Mandrioli, M.; Vanden Braber, N.; Rodriguez-Estrada, M. T.; García, N. A.; Borsarelli, C. D.; Montenegro, M. A. Gum Arabic Microcapsules as Protectors of the Photoinduced Degradation of Riboflavin in Whole Milk. J. Dairy Sci. 2014, 97, 5328–5336. DOI: 10.3168/jds.2013-7886.
  • Sharma, R.; Lal, D. Stability of Different Water-Soluble Vitamins During Preparation and Subsequent Storage of Spray Dried Buffalo Skim Milk Powder. J. Food Sci. Technol. 2002, 39, 439–441.
  • Panyoyai, N.; Bannikova, A.; Small, D. M.; Shanks, R. A.; Kasapis, S. Diffusion of Nicotinic Acid in Spray-Dried Capsules of Whey Protein Isolate. Food Hydrocoll. 2016, 52, 811–819. DOI: 10.1016/j.foodhyd.2015.08.022.
  • Paidi, S. K.; Jena, S. K.; Ahuja, B. K.; Devasari, N.; Suresh, S. Preparation, In-Vitro and In-Vivo Evaluation of Spray-Dried Ternary Solid Dispersion of Biopharmaceutics Classification System Class II Model Drug. 2015, 1–14. DOI: 10.1111/jphp.12358.
  • Carlan, I. C.; Estevinho, B. N.; Rocha, F. Production of Vitamin B1 Microparticles by a Spray Drying Process Using Different Biopolymers as Wall Materials. Can. J. Chem. Eng. 2020, 98(8), 1682–1695.
  • Carlan, I. C.; Estevinho, B. N.; Rocha, F. Study of Microencapsulation and Controlled Release of Modified Chitosan Microparticles Containing Vitamin B12. Powder Technol. 2017, 318, 162–169. DOI: 10.1016/j.powtec.2017.05.041.
  • Carlan, I. C.; Estevinho, B. N.; Rocha, F. Study of Different Encapsulating Agents for the Microencapsulation of Vitamin B12. Environ. Eng. Manag. J. 2018, 17, 855–864.
  • Estevinho, B. N.; Carlan, I.; Blaga, A.; Rocha, F. Soluble Vitamins (Vitamin B12 and Vitamin C) Microencapsulated with Different Biopolymers by a Spray Drying Process. Powder Technol. 2016, 289, 71–78. DOI: 10.1016/j.powtec.2015.11.019.
  • Carlan, I. C.; Estevinho, B. N.; Rocha, F. Study of Different Encapsulating Agents for the Microencapsulation of Vitamin B12. 2018, 17, 855–864.
  • Beztsinna, N.; Sol, M.; Taib, N.; Bestel, I. Bioengineered Riboflavin in Nanotechnology. Biomaterials 2016, 80, 121–133. DOI: 10.1016/j.biomaterials.2015.11.050.
  • Fangmann, D.; Theismann, E.; Kathrin, T.; Schulte, D. M.; Relling, I.; Hartmann, K.; Keppler, J. K.; Rehman, A.; Heinsen, F.; Franke, A. Targeted Microbiome Intervention by Microencapsulated Delayed – Release Niacin Bene Fi Cially Affects Insulin Sensitivity in Humans. 2017, 1–8. DOI: 10.2337/dc17-1967.
  • Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223.
  • Estevinho, B. N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with Chitosan by Spray Drying for Industry Applications – A Review. Trends Food Sci. Technol. 2013, 31, 138–155. DOI: 10.1016/j.tifs.2013.04.001.
  • Aguilera-Méndez, A.; Fernández-Lainez, C.; Ibarra-González, I.; Fernandez-Mejia, C. Chapter 7. The Chemistry and Biochemistry of Niacin (B3). Food and Nutritional Components in Focus No. 4. In B Vitamins and Folate: Chemistry, Analysis, Function and Effects, Preedy, V. R., Eds.; The Royal Society of Chemistry, 2013.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. DOI: 10.1016/j.cis.2015.05.003.
  • Desai, K. G. H.; Park, H. J. Encapsulation of Vitamin C in Tripolyphosphate Cross-Linked Chitosan Microspheres by Spray Drying. J. Microencapsul. 2005, 22, 179–192. DOI: 10.1080/02652040400026533.
  • Desai, K. G.; Park, H. J. Effect of Manufacturing Parameters on the Characteristics of Vitamin C Encapsulated Tripolyphosphate-Chitosan Microspheres Prepared by Spray-Drying. J. Microencapsul. 2006, 23, 91–103. DOI: 10.1080/02652040500435436.
  • Chatterjee, N. S.; Anandan, R.; Navitha, M.; Asha, K. K.; Kumar, K. A.; Mathew, S.; Ravishankar, C. N. Development of Thiamine and Pyridoxine Loaded Ferulic Acid-Grafted Chitosan Microspheres for Dietary Supplementation. J. Food Sci. Technol. 2016, 53, 551–560. DOI: 10.1007/s13197-015-2044-4.
  • Azevedo, M. A.; Bourbon, A. I.; Vicente, A. A.; Cerqueira, M. A. Alginate/Chitosan Nanoparticles for Encapsulation and Controlled Release of Vitamin B2. Int. J. Biol. Macromol. 2014, 71, 141–146. DOI: 10.1016/j.ijbiomac.2014.05.036.
  • Akbari, A.; Wu, J. Ovomucin Nanoparticles: Promising Carriers for Mucosal Delivery of Drugs and Bioactive Compounds. Drug Deliv. Transl. Res. 2017, 7, 598–607. DOI: 10.1007/s13346-017-0406-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.