582
Views
9
CrossRef citations to date
0
Altmetric
Articles

Mechanisms of nanofluid based modification MoS2 nanosheet for enhanced oil recovery in terms of interfacial tension, wettability alteration and emulsion stability

ORCID Icon, &
Pages 26-37 | Received 30 Dec 2020, Accepted 04 May 2021, Published online: 09 Jun 2021

References

  • Alhomadhi, E.; Amro, M.; Almobarky, M. Experimental Application of Ultrasound Waves to Improved Oil Recovery during Waterflooding. J. King Saud Univ. Eng. Sci. 2014, 26, 103–110. DOI: 10.1016/j.jksues.2013.04.002.
  • Ahmed, T. Chapter 11 - Oil Recovery Mechanisms and the Material Balance Equation. In Reservoir Engineering Handbook, 4th ed.; Ahmed, T., Ed.; Gulf Professional Publishing: Boston, 2010, pp 733–809.
  • Druetta, P.; Picchioni, F. Branched Polymers and Nanoparticles Flooding as Separate Processes for Enhanced Oil Recovery. Fuel 2019, 257, 115996. DOI: 10.1016/j.fuel.2019.115996.
  • Alzahid, Y. A.; Mostaghimi, P.; Walsh, S. D. C.; Armstrong, R. T. Flow Regimes during Surfactant Flooding: The Influence of Phase Behaviour. Fuel 2019, 236, 851–860. DOI: 10.1016/j.fuel.2018.08.086.
  • Ayirala, S. C.; Boqmi, A.; Alghamdi, A.; AlSofi, A. Dilute Surfactants for Wettability Alteration and Enhanced Oil Recovery in Carbonates. J. Mol. Liq. 2019, 285, 707–715. DOI: 10.1016/j.molliq.2019.04.146.
  • Chen, X. C.; Feng, Q. H.; Liu, W.; Sepehrnoori, K. Modeling Preformed Particle Gel Surfactant Combined Flooding for Enhanced Oil Recovery after Polymer Flooding. Fuel 2017, 194, 42–49. DOI: 10.1016/j.fuel.2016.12.075.
  • Liu, S. H.; Li, R. F.; Miller, C. A.; Hirasaki, G. J. Alkaline/Surfactant/Polymer Processes: Wide Range of Conditions for Good Recovery. Spe J. 2010, 15, 282–293. DOI: 10.2118/113936-PA.
  • Torrealba, V. A.; Hoteit, H. Improved Polymer Flooding Injectivity and Displacement by considering Compositionally-Tuned Slugs. J. Petrol Sci. Eng. 2019, 178, 14–26. DOI: 10.1016/j.petrol.2019.03.019.
  • Wang, Z. Z.; Hu, R. T.; Ren, G. H.; Li, G. R.; Liu, S. Y.; Xu, Z. H.; Sun, D. J. Polyetheramine as an Alternative Alkali for Alkali/Surfactant/Polymer Flooding. Colloid Surf. A. 2019, 581.
  • Ahmadall, T.; Gonzalez, M. V.; Harwell, J. H.; Scamehorn, J. F. Reducing Surfactant Adsorption in Carbonate Reservoirs. Spe-24105-Pa 1993 1993, 8, 117–122. DOI: 10.2118/24105-PA.
  • Ahmadi, Y.; Eshraghi, S. E.; Bahrami, P.; Hasanbeygi, M.; Kazemzadeh, Y.; Vahedian, A. Comprehensive Water–Alternating-Gas (WAG) Injection Study to Evaluate the Most Effective Method Based on Heavy Oil Recovery and Asphaltene Precipitation Tests. J. Petrol Sci. Eng. 2015, 133, 123–129. DOI: 10.1016/j.petrol.2015.05.003.
  • Almahfood, M.; Bai, B. The Synergistic Effects of Nanoparticle-Surfactant Nanofluids in EOR Applications. J. Petrol Sci. Eng. 2018, 171, 196–210. DOI: 10.1016/j.petrol.2018.07.030.
  • Thomas, S. Enhanced Oil recovery - An Overview. Oil & Gas Sci. Technol. - Rev. IFP 2008, 63, 9–19. DOI: 10.2516/ogst:2007060.
  • AfzaliTabar, M.; Alaei, M.; Bazmi, M.; Ranjineh Khojasteh, R.; Koolivand-Salooki, M.; Motiee, F.; Rashidi, A. M. Facile and Economical Preparation Method of Nanoporous Graphene/Silica Nanohybrid and Evaluation of Its Pickering Emulsion Properties for Chemical Enhanced Oil Recovery (C-EOR). Fuel 2017, 206, 453–466. DOI: 10.1016/j.fuel.2017.05.102.
  • Kazemzadeh, Y.; Sharifi, M.; Riazi, M.; Rezvani, H.; Tabaei, M. Potential Effects of Metal Oxide/SiO2 Nanocomposites in EOR Processes at Different Pressures. Colloids Surf, A. 2018, 559, 372–384. DOI: 10.1016/j.colsurfa.2018.09.068.
  • Lau, H. C.; Yu, M.; Nguyen, Q. P. Nanotechnology for Oilfield Applications: Challenges and Impact. J. Petrol Sci. Eng. 2017, 157, 1160–1169. DOI: 10.1016/j.petrol.2017.07.062.
  • Sofla, S. J. D.; James, L. A.; Zhang, Y. H. Insight into the Stability of Hydrophilic Silica Nanoparticles in Seawater for Enhanced Oil Recovery Implications. Fuel 2018, 216, 559–571. DOI: 10.1016/j.fuel.2017.11.091.
  • Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions Stabilised Solely by Colloidal Particles. Adv. Colloid Interfac. 2003, 100–102, 503–546. DOI: 10.1016/S0001-8686(02)00069-6.
  • Binks, B. P. Particles as Surfactants—Similarities and Differences. Curr. Opin. Colloid & Interface Sci. 2002, 7, 21–41. DOI: 10.1016/S1359-0294(02)00008-0.
  • Hunter, T. N.; Wanless, E. J.; Jameson, G. J.; Pugh, R. J. Non-Ionic Surfactant Interactions with Hydrophobic Nanoparticles: Impact on Foam Stability. Colloid Surf. A. 2009, 347, 81–89. DOI: 10.1016/j.colsurfa.2008.12.027.
  • Metin, C. O.; Baran, J. R.; Nguyen, Q. P. Adsorption of Surface Functionalized Silica Nanoparticles onto Mineral Surfaces and Decane/Water Interface. J. Nanopart. Res. 2012, 14. DOI: 10.1007/s11051-012-1246-1.
  • Ma, H.; Luo, M. X.; Dai, L. L. Influences of Surfactant and Nanoparticle Assembly on Effective Interfacial Tensions. Phys. Chem. Chem. Phys. 2008, 10, 2207–2213. DOI: 10.1039/b718427c.
  • Moghadam, T. F.; Azizian, S. Effect of ZnO Nanoparticle and Hexadecyltrimethylammonium Bromide on the Dynamic and Equilibrium Oil-Water Interfacial Tension. J. Phys. Chem. B. 2014, 118, 1527–1534. DOI: 10.1021/jp4106986.
  • Pichot, R.; Spyropoulos, F.; Norton, I. T. Competitive Adsorption of Surfactants and Hydrophilic Silica Particles at the Oil–Water Interface: Interfacial Tension and Contact Angle Studies. J. Colloid Interface Sci. 2012, 377, 396–405. DOI: 10.1016/j.jcis.2012.01.065.
  • Ravera, F.; Ferrari, M.; Liggieri, L.; Loglio, G.; Santini, E.; Zanobini, A. Liquid–Liquid Interfacial Properties of Mixed Nanoparticle–Surfactant Systems. Colloids Surf, A. 2008, 323, 99–108. DOI: 10.1016/j.colsurfa.2007.10.017.
  • Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L. Effect of Nanoparticles on the Interfacial Properties of Liquid/Liquid and Liquid/Air Surface Layers. J. Phys. Chem. B. 2006, 110, 19543–19551. DOI: 10.1021/jp0636468.
  • Saien, J.; Rezvani Pour, A.; Asadabadi, S. Interfacial Tension of the n-Hexane–Water System under the Influence of Magnetite Nanoparticles and Sodium Dodecyl Sulfate Assembly at Different Temperatures. J. Chem. Eng. Data 2014, 59, 1835–1842. DOI: 10.1021/je401066j.
  • Zamani, H.; Jafari, A.; Mousavi, S. M.; Darezereshki, E. Biosynthesis of Silica Nanoparticle Using Saccharomyces Cervisiae and Its Application on Enhanced Oil Recovery. J. Petrol Sci. Eng. 2020, 190, 107002.
  • Roh, K. H.; Martin, D. C.; Lahann, J. Biphasic Janus Particles with Nanoscale Anisotropy. Nat. Mater. 2005, 4, 759–763. DOI: 10.1038/nmat1486.
  • Walther, A.; Muller, A. H. E. Janus Particles. Soft Matter. 2008, 4, 663–668. DOI: 10.1039/b718131k.
  • Hong, L.; Jiang, S.; Granick, S. Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir 2006, 22, 9495–9499. DOI: 10.1021/la062716z.
  • Yan, J.; Chaudhary, K.; Bae, S. C.; Lewis, J. A.; Granick, S. Colloidal Ribbons and Rings from Janus Magnetic Rods. Nat. Commun. 2013, 4. DOI: 10.1038/ncomms2520.
  • Dai, C. L.; Wang, X. K.; Li, Y. Y.; Lv, W. J.; Zou, C. W.; Gao, M. W.; Zhao, M. W. Spontaneous Imbibition Investigation of Self-Dispersing Silica Nanofluids for Enhanced Oil Recovery in Low-Permeability Cores. Energy Fuels 2017, 31, 2663–2668. DOI: 10.1021/acs.energyfuels.6b03244.
  • Wei, P. R.; Luo, Q. M.; Edgehouse, K. J.; Hemmingsen, C. M.; Rodier, B. J.; Pentzer, E. B. 2D Particles at Fluid-Fluid Interfaces: Assembly and Templating of Hybrid Structures for Advanced Applications. ACS Appl. Mater. Interfaces 2018, 10, 21765–21781. DOI: 10.1021/acsami.8b07178.
  • Yin, T. H.; Yang, Z. H.; Lin, M. Q.; Zhang, J.; Dong, Z. X. Preparation of Janus Nanosheets via Reusable Cross-Linked Polymer Microspheres Template. Chem. Eng. J. 2019, 371, 507–515. DOI: 10.1016/j.cej.2019.04.093.
  • Wu, H.; Yi, W. Y.; Chen, Z.; Wang, H. T.; Du, Q. G. Janus Graphene Oxide Nanosheets Prepared via Pickering Emulsion Template. Carbon 2015, 93, 473–483. DOI: 10.1016/j.carbon.2015.05.083.
  • Zhang, D. L.; Liu, S. H.; Puerto, M.; Miller, C. A.; Hirasaki, G. J. Wettability Alteration and Spontaneous Imbibition in Oil-Wet Carbonate Formations. J. Petrol Sci. Eng. 2006, 52, 213–226. DOI: 10.1016/j.petrol.2006.03.009.
  • Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically Exfoliated Metallic MoS2 Nanosheets: A Promising Supporting co-Catalyst for Enhancing the Photocatalytic Performance of TiO2 Nanocrystals. Nano Res. 2015, 8, 175–183. DOI: 10.1007/s12274-014-0606-9.
  • Yi, M.; Zhang, C. The Synthesis of Two-Dimensional MoS2 Nanosheets with Enhanced Tribological Properties as Oil Additives. RSC Adv. 2018, 8, 9564–9573. DOI: 10.1039/C7RA12897E.
  • Altavilla, C.; Sarno, M.; Ciambelli, P. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@Oleylamine (M═Mo, W). Chem. Mater. 2011, 23, 3879–3885. DOI: 10.1021/cm200837g.
  • Arad-Vosk, N.; Sa'ar, A. Radiative and Nonradiative Relaxation Phenomena in Hydrogen- and Oxygen-Terminated Porous Silicon. Nanoscale Res. Lett. 2014, 9, DOI: 10.1186/1556-276X-9-47.
  • Samanta, S. K.; Maikap, S.; Bera, L. K.; Banerjee, H. D.; Maiti, C. K. Effect of Post-Oxidation Annealing on the Electrical Properties and Oxynitride Films of Deposited Oxide on strained-Si0.82Ge0.18 Layers. Semicond. Sci. Technol. 2001, 16, 704–707. DOI: 10.1088/0268-1242/16/8/312.
  • Tuteja, S. K.; Duffield, T.; Neethirajan, S. Liquid Exfoliation of 2D MoS2 Nanosheets and Their Utilization as a Label-Free Electrochemical Immunoassay for Subclinical Ketosis. Nanoscale 2017, 9, 10886–10896. DOI: 10.1039/C7NR04307D.
  • Kamal, M. S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfact. Deterg. 2016, 19, 223–236. DOI: 10.1007/s11743-015-1776-5.
  • de Aguiar, H. B.; Strader, M. L.; de Beer, A. G. F.; Roke, S. Surface Structure of Sodium Dodecyl Sulfate Surfactant and Oil at the Oil-in-Water Droplet Liquid/Liquid Interface: A Manifestation of a Nonequilibrium Surface State. J. Phys. Chem. B. 2011, 115, 2970–2978. DOI: 10.1021/jp200536k.
  • Yang, Y.; Ma, Z.; Xia, F.; Li, X. Adsorption Behavior of Oil-Displacing Surfactant at Oil/Water Interface: Molecular Simulation and Experimental. J. Water Process Eng. 2020, 36, 101292. DOI: 10.1016/j.jwpe.2020.101292.
  • Salehi, M.; Johnson, S. J.; Liang, J. T. Mechanistic Study of Wettability Alteration Using Surfactants with Applications in Naturally Fractured Reservoirs. Langmuir 2008, 24, 14099–14107. DOI: 10.1021/la802464u.
  • Bera, A.; Kissmathulla, S.; Ojha, K.; Kumar, T.; Mandal, A. Mechanistic Study of Wettability Alteration of Quartz Surface Induced by Nonionic Surfactants and Interaction between Crude Oil and Quartz in the Presence of Sodium Chloride Salt. Energy Fuels 2012, 26, 3634–3643. DOI: 10.1021/ef300472k.
  • Ma, T.; Feng, H. S.; Wu, H. R.; Li, Z.; Jiang, J. T.; Xu, D. R.; Meng, Z. Y.; Kang, W. L. Property Evaluation of Synthesized Anionic-Nonionic Gemini Surfactants for Chemical Enhanced Oil Recovery. Colloid Surf. A. 2019, 581.
  • Liu, Z.; Song, Y.; Liu, W.; Liu, R.; Lang, C.; Li, Y. Rheology of Methane Hydrate Slurries Formed from Water-in-Oil Emulsion with Different Surfactants Concentrations. Fuel 2020, 275, 117961. DOI: 10.1016/j.fuel.2020.117961.
  • Yekeen, N.; Padmanabhan, E.; Syed, A. H.; Sevoo, T.; Kanesen, K. Synergistic Influence of Nanoparticles and Surfactants on Interfacial Tension Reduction, Wettability Alteration and Stabilization of Oil-in-Water Emulsion. J. Petrol Sci. Eng. 2020, 186, 106779. DOI: 10.1016/j.petrol.2019.106779.
  • Zhang, Q.; Bai, R. X.; Guo, T.; Meng, T. Switchable Pickering Emulsions Stabilized by Awakened TiO2 Nanoparticle Emulsifiers Using UV/Dark Actuation. ACS Appl. Mater. Interfaces 2015, 7, 18240–18246. DOI: 10.1021/acsami.5b06808.
  • Li, Z.; Bai, B. J.; Xu, D. R.; Meng, Z. Y.; Ma, T.; Gou, C. B.; Gao, K.; Sun, R. X.; Wu, H. R.; Hou, J. R.; Kang, W. L. Synergistic Collaboration between Regenerated Cellulose and Surfactant to Stabilize Oil/Water (O/W) Emulsions for Enhancing Oil Recovery. Energy Fuels 2019, 33, 81–88. DOI: 10.1021/acs.energyfuels.8b02999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.