151
Views
2
CrossRef citations to date
0
Altmetric
Articles

Rheological improvement of TiO2 nanoparticles modified by dicarboxylic acids

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 38-50 | Received 05 Jan 2021, Accepted 04 May 2021, Published online: 09 Jun 2021

References

  • Karger-Kocsis, J. Polypropylene Structure, Blends and Composites: Volume 3 Composites; Springer Science & Business Media, 2012.
  • Bai, Y.; Mora-Sero, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chem. Rev. 2014, 114, 10095–10130. DOI: 10.1021/cr400606n.
  • Johnson, A. M.; Trakhtenberg, S.; Cannon, A. S.; Warner, J. C. Effect of pH on the Viscosity of Titanium Dioxide Aqueous Dispersions with Carboxylic Acids. J. Phys. Chem. A 2007, 111, 8139–8146. DOI: 10.1021/jp071398p.
  • Abdellah, M.; Nosier, S.; El-Shazly, A.; Mubarak, A. Photocatalytic Decolorization of Methylene Blue Using TiO2/UV System Enhanced by Air Sparging. Alexandria Eng. J. 2018, 57, 3727–3735. DOI: 10.1016/j.aej.2018.07.018.
  • Bet-Moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 Nanocomposite Based Polymeric Membranes: A Review on Performance Improvement for Various Applications in Chemical Engineering Processes. Chem. Eng. J. 2016, 283, 29–46. DOI: 10.1016/j.cej.2015.06.124.
  • Cheraghian, G. Effect of Nano Titanium Dioxide on Heavy Oil Recovery during Polymer Flooding. Pet. Sci. Technol. 2016, 34, 633–641. DOI: 10.1080/10916466.2016.1156125.
  • Zhang, R.; Cheng, X.; Hou, P.; Ye, Z. Influences of Nano-TiO2 on the Properties of Cement-Based Materials: Hydration and Drying Shrinkage. Constr. Build. Mater. 2015, 81, 35–41. DOI: 10.1016/j.conbuildmat.2015.02.003.
  • Haider, A. J.; Jameel, Z. N.; Al-Hussaini, I. H. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. DOI: 10.1016/j.egypro.2018.11.159.
  • Fazio, S.; Guzman, J.; Colomer, M.; Salomoni, A.; Moreno, R. Colloidal Stability of Nanosized Titania Aqueous Suspensions. J. Eur. Ceram. Soc. 2008, 28, 2171–2176. DOI: 10.1016/j.jeurceramsoc.2008.02.017.
  • Sol’is-Gómez, A.; Neira-Velázquez, M. G.; Morales, J.; Sáanchez-Castillo, M. A.; Pérez, E. Improving Stability of TiO2 Particles in Water by RF-Plasma Polymerization of Poly (Acrylic Acid) on the Particle Surface. Colloids Surf. A 2014, 451, 66–74. DOI: 10.1016/j.colsurfa.2014.03.021.
  • Liufu, S.; Xiao, H.; Li, Y. Adsorption of poly(acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. J. Colloid Interface Sci. 2005, 281, 155–163. DOI: 10.1016/j.jcis.2004.08.075.
  • Das, P. K.; Mallik, A. K.; Ganguly, R.; Santra, A. K. Stability and Thermophysical Measurements of TiO2 (Anatase) Nanofluids with Different Surfactants. J. Mol. Liq. 2018, 254, 98–107. DOI: 10.1016/j.molliq.2018.01.075.
  • Si, Y.; Liu, H.; Li, N.; Zhong, J.; Li, J.; Ma, D. SDBS-Assisted Hydrothermal Treatment of TiO2 with Improved Photocatalytic Activity. Mater. Lett. 2018, 212, 147–150. DOI: 10.1016/j.matlet.2017.10.088.
  • Parmar, M. Dicarboxylic Acid; Elsevier, 2014. Amsterdam, The Netherlands.
  • Zapata-Tello, D.; Escobar-Barrios, V.; Gonzalez-Calderon, J.; Perez, E. Chemical Modification of Titanium Dioxide Nanoparticles with Dicarboxylic Acids to Mediate the UV Degradation in Polyethylene Films. Polym. Bull. 2020, 77, 6409–6423. DOI: 10.1007/s00289-019-03066-6.
  • Leong, H. J.; Oh, S.-G. Preparation of Antibacterial TiO2 Particles by Hybridization with Azelaic Acid for Applications in Cosmetics. J. Ind. Eng. Chem. 2018, 66, 242–247. DOI: 10.1016/j.jiec.2018.05.035.
  • Khajavi, R.; Berendjchi, A. Effect of Dicarboxylic Acid Chain Length on the Self-Cleaning Property of Nano-TiO2-Coated Cotton Fabrics. ACS Appl. Mater. Interfaces 2014, 6, 18795–18799. DOI: 10.1021/am504489u.
  • Mikulášek, P.; Wakeman, R. J.; Marchant, J. Q. The Influence of pH and Temperature on the Rheology and Stability of Aqueous Titanium Dioxide Dispersions. Chem. Eng. J. 1997, 67, 97–102. DOI: 10.1016/S1385-8947(97)00026-0.
  • Zhou, Z.; Scales, P. J.; Boger, D. V. Chemical and Physical Control of the Rheology of Concentrated Metal Oxide Suspensions. Chem. Eng. Sci. 2001, 56, 2901–2920. DOI: 10.1016/S0009-2509(00)00473-5.
  • Tseng, W. J.; Lin, K.-C. Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions. Mater. Sci. Eng. A 2003, 355, 186–192. DOI: 10.1016/S0921-5093(03)00063-7.
  • Rubio-Hernandez, F.; Ayucar-Rubio, M.; Velazquez-Navarro, J.; Galindo-Rosales, F. Intrinsic Viscosity of SiO2, Al2O3 and TiO2 Aqueous Suspensions. J. Colloid Interface Sci. 2006, 298, 967–972. DOI: 10.1016/j.jcis.2006.01.009.
  • Teh, E.-J.; Leong, Y.-K.; Craig, V. S. Surface Forces and Rheology of Titanium Dioxide in the Presence of Dicarboxylic Acids: From Molecular Interactions to Yield Stress. Langmuir 2017, 33, 1496–1506. DOI: 10.1021/acs.langmuir.6b04314.
  • Tomasik, P.; Schilling, C. H.; Jankowiak, R.; Kim, J. C. The Role of Organic Dispersants in Aqueous Alumina Suspensions. J. Eur. Ceram. Soc. 2003, 23, 913–919. DOI: 10.1016/S0955-2219(02)00204-2.
  • Zhang, S.; Sha, N.; Zhao, Z. Surface Modification of α-Al2O3 with Dicarboxylic Acids for the Preparation of UV-Curable Ceramic Suspensions. J. Eur. Ceram. Soc. 2017, 37, 1607–1616. DOI: 10.1016/j.jeurceramsoc.2016.12.013.
  • Zapata-Tello, D.; Vallejo-Montesinos, J.; Zarraga-Nunez, R.; Gonzalez-Calderon, J.; Perez, E. Improving Titanium Dioxide Dispersion in Water through Surface Functionalization by a Dicarboxylic Acid. J. Dispersion Sci. Technol. 2018, 40(7), 1039-1045.
  • Güllü, H. Comparison of Rheological Models for Jet Grout Cement Mixtures with Various Stabilizers. Constr. Build. Mater. 2016, 127, 220–236.
  • Mueller, S.; Llewellin, E.; Mader, H. M. The Rheology of Solid Particles. Proc. R. Soc. A 2010, 466, 1201–1228. DOI: 10.1098/rspa.2009.0445.
  • Nehdi, M.; Rahman, M.-A. Estimating Rheological Properties of Cement Pastes Using Various Rheological Models for Different Test Geometry, Gap and Surface Friction. Cem. Concr. Res. 2004, 34, 1993–2007. DOI: 10.1016/j.cemconres.2004.02.020.
  • Li, H.; Ding, S.; Zhang, L.; Ouyang, J.; Han, B. Effects of Particle Size, Crystal Phase and Surface Treatment of nano-TiO2 on the Rheological Parameters of Cement Paste. Constr. Build. Mater. 2020, 239, 117897. DOI: 10.1016/j.conbuildmat.2019.117897.
  • Gonzalez-Calderon, J. A.; Castrejon-Gonzalez, E. O.; Medellin-Rodriguez, F. J.; Stribeck, N.; Almendarez-Camarillo, A. Functionalization of Multi-Walled Carbon Nanotubes (MWCNTs) with Pimelic Acid Molecules: Effect of Linkage on β-Crystal Formation in an Isotactic Polypropylene (iPP) Matrix. J. Mater. Sci. 2015, 50, 1457–1468. DOI: 10.1007/s10853-014-8706-1.
  • López-Esparza, R.; Altamirano, B.; Pérez, E.; Gama Goicochea, A. Importance of Molecular Interactions in Colloidal Dispersions. Adv. Condens. Matter. Phys. 2015, 2015, 1–8. DOI: 10.1155/2015/683716.
  • Tai, J. T.; Lai, C. S.; Ho, H. C.; Yeh, Y. S.; Wang, H. F.; Ho, R. M.; Tsai, D. H. Protein-Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir 2014, 30, 12755–12764. DOI: 10.1021/la5033465.
  • Montes-Zavala, I.; Castrejón-González, E. O.; Rico-Ramírez, V.; Pérez, E.; Santamaría-Razo, D. A.; González-Calderón, J. A. Which Is Better? Experimental and Simulation Analyses of the Chemical Modification of Carbon Nanotubes to Improve Their Dispersion in Water. J. Dispers. Sci. Technol. 2020, 1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.