206
Views
5
CrossRef citations to date
0
Altmetric
Articles

Study of an anti-high-temperature and salt-resistance alkyl glycine foaming agent and its foam stabilizing mechanism

&
Pages 86-97 | Received 12 Jan 2021, Accepted 04 May 2021, Published online: 10 Jun 2021

References

  • Ma, J.; An, Y.; Yu, P. Core-Shell Structure Acrylamide Copolymer Grafted on Nano-Silica Surface as an anti-Calcium and anti-Temperature Fluid Loss Agent. J. Mater. Sci. 2019, 54, 5927–5941. DOI: 10.1007/s10853-018-03239-0.
  • Hosseini, H.; Tsau, J. S.; Shafer-Peltier, K.; Marshall, C.; Ye, Q.; Ghahfarokhi, R. B. Experimental and Mechanistic Study of Stabilized Dry CO2 Foam Using Polyelectrolyte Complex Nanoparticles Compatible with Produced Water to Improve Hydraulic Fracturing Performance. Ind. Eng. Chem. Res. 2019, 58, 9431–9449. DOI: 10.1021/acs.iecr.9b01390.
  • Verma, A.; Chauhan, G.; Ojha, K. Synergistic Effects of Polymer and Bentonite Clay on Rheology and Thermal Stability of Foam Fluid Developed for Hydraulic Fracturing. Asia-Pac. J. Chem. Eng. 2017, 12, 872–883. DOI: 10.1002/apj.2125.
  • Nazari, N.; Hosseini, H.; Tsau, J. S.; Shafer-Peltier, K.; Marshall, C.; Ye, Q.; Barati Ghahfarokhi, R. Development of Highly Stable Lamella Using Polyelectrolyte Complex Nanoparticles: An Environmentally Friendly scCO2 Foam Injection Method for CO2 Utilization Using EOR. Fuel 2020, 261, 116360. DOI: 10.1016/j.fuel.2019.116360.
  • Liwei, R. Progress of Research and Application of Surfactant in Drilling Fluid. Sino-Global Energy 2016, 21, 34–39.
  • Xiutai, Z.; Quan, W.; Zengbao, W.; Zenglei, R.; Dongqi, Z.; Meihua, M. Commonly Used Foaming Agents in High Temperature and High Salinity Reservoir. Material Guide A: Review 2016, 30, 75–80.
  • Chen, Y.; Elhag, A. S.; Cui, L.; Worthen, A. J.; Reddy, P. P.; Noguera, J. A.; Ou, A. M.; Ma, K.; Puerto, M.; Hirasaki, G. J.; et al. CO2-in-Water Foam at Elevated Temperature and Salinity Stabilized with a Nonionic Surfactant with a High Degree of Ethoxylation. Ind. Eng. Chem. Res. 2015, 54, 4252–4263. DOI: 10.1021/ie503674m.
  • Galimberti, M.; Martino, M.; Guenzi, M.; Leonardi, G.; Citterio, A. Thermal Stability of Ammonium Salts as Compatibilizers in Polymer/Layered Silicate Nanocomposites. E-Polymers 2009, 9(1), 686–699.
  • Cubillos, H.; Montes, J.; Prieto, C.; Romero, P. Assessment of Foam for GOR Control to Optimize Miscible Gas Injection Recovery[C], Tulsa, Oklahoma, USA, 2012. DOI: 10.2118/152113-MS.
  • Zhou, Z.-H.; Zhang, Q.; Liu, Y.; Wang, H.-Z.; Cai, H.-Y.; Zhang, F.; Tian, M.-Z.; Liu, Z.-Y.; Zhang, L.; Zhang, L.; et al. Effect of Fatty Acids on Interfacial Tensions of Novel Sulfobetaines Solutions. Energy Fuels 2014, 28, 1020–1027. DOI: 10.1021/ef402416j.
  • Saxena, N.; Pal, N.; Ojha, K.; Dey, S.; Mandal, A. Synthesis, Characterization, Physical and Thermodynamic Properties of a Novel Anionic Surfactant Derived from Sapindus laurifolius. RSC Adv. 2018, 8, 24485–24499. DOI: 10.1039/C8RA03888K.
  • Singh, R.; Mohanty, K. K. Synergistic Stabilization of Foams by a Mixture of Nanoparticles and Surfactants[C]. SPE Improved Oil Recovery Symposium, 12–16 April, Tulsa, Oklahoma, USA, 2014. DOI: 10.2118/169126-MS.
  • Yuming, K.; Yue, L.; Zhao-Hua, R.; Guolin, L.; Lingbo, T. Progress in Synthesis of Amino Acid-Based Amphoteric Surfactants. Chemistry&Bioengineering 2012, 29, 9–12.
  • Pinazo, A.; Manresa, M. A.; Marques, A. M.; Bustelo, M.; Espuny, M. J.; Perez, L. Amino Acid-Based Surfactants: New Antimicrobial Agents. Adv. Colloid Interf. Sci. 2016, 228, 17–39. DOI: 10.1016/j.cis.2015.11.007.
  • Joondan, N.; Jhaumeer-Laulloo, S.; Caumul, P.; Akerman, M. Synthesis, Physicochemical, and Biological Activities of Novel N-Acyl Tyrosine Monomeric and Gemini Surfactants in Single and SDS/CTAB-Mixed Micellar System. J. Phys. Org. Chem. 2017, 30, e3675. DOI: 10.1002/poc.3675.
  • Shi, Y.; Wang, J. Synthesis and Properties of N-Dodecyl Aspartic Acid and its Sodium Salt. J. Surfact. Deterg. 2014, 17, 1133–1140. DOI: 10.1007/s11743-014-1617-y.
  • Rostami, A.; Hashemi, A.; Takassi, M. A.; Zadehnazari, A. Experimental Assessment of a Lysine Derivative Surfactant for Enhanced Oil Recovery in Carbonate Rocks: Mechanistic and Core Displacement Analysis. J. Mol. Liq. 2017, 232, 310–318. DOI: 10.1016/j.molliq.2017.01.042.
  • Alzobaidi, S.; Da, C.; Vu, T.; Prodanovic, M.; Johnston, K. P. High Temperature Ultralow Water Content Carbon Dioxide-in-Water Foam Stabilized with Viscoelastic Zwitterionic Surfactants. J. Colloid Interf. Sci. 2017, 488, 79–91. DOI: 10.1016/j.jcis.2016.10.054.
  • Hussain, S. M. S.; Kamal, M. S.; Fogang, L. T. Effect of Internal Olefin on the Properties of Betaine-Type Zwitterionic Surfactants for Enhanced Oil Recovery. J. Mol. Liq. 2018, 266, 43–50. DOI: 10.1016/j.molliq.2018.06.031.
  • Hussain, S. M. S.; Fogang, L. T.; Kamal, M. S. Synthesis and Performance Evaluation of Betaine Type Zwitterionic Surfactants Containing Different Degrees of Ethoxylation. J. Mol. Struct. 2018, 1173, 983–989. DOI: 10.1016/j.molstruc.2018.07.069.
  • Da, C.; Alzobaidi, S.; Jian, G.; Zhang, L.; Biswal, S. L.; Hirasaki, G. J.; Johnston, K. P. Carbon Dioxide/Water Foams Stabilized with a Zwitterionic Surfactant at Temperatures up to 150 °C in High Salinity Brine. J. Petrol. Sci. Eng. 2018, 166, 880–890. DOI: 10.1016/j.petrol.2018.03.071.
  • Zhang, L.; Jian, G.; Puerto, M.; Wang, X.; Chen, Z.; Da, C.; Johnston, K.; Hirasaki, G.; Biswal, S. L. Crude Oil Recovery with Duomeen CTM-Stabilized Supercritical CO 2 Foams for HPHT and Ultrahigh-Salinity Carbonate Reservoirs. Energy Fuels. 2020, 34, 15727–15735. DOI: 10.1021/acs.energyfuels.0c02048.
  • Da, C.; Jian, G.; Alzobaidi, S.; Yang, J.; Biswal, S. L.; Hirasaki, G. J.; Johnston, K. P. Design of CO 2 -in-Water Foam Stabilized with Switchable Amine Surfactants at High Temperature in High-Salinity Brine and Effect of Oil. Energy Fuels. 2018, 32, 12259–12267. DOI: 10.1021/acs.energyfuels.8b02959.
  • Zhao, J.; Dai, C.; Ding, Q.; Du, M.; Feng, H.; Wei, Z.; Chen, A.; Zhao, M. The Structure Effect on the Surface and Interfacial Properties of Zwitterionic Sulfobetaine Surfactants for Enhanced Oil Recovery. RSC Adv. 2015, 5, 13993–14001. DOI: 10.1039/C4RA16235H.
  • Haggman, L.; Lindblad, C.; Oskarsson, H.; Ullstrom, A. S.; Persson, I. The Influence of Short Strong Hydrogen Bonding on the Structure and the Physicochemical Properties of Alkyl- N -Iminodiacetic Acids in Solid State and Aqueous Systems. J. Am. Chem. Soc. 2003, 125, 3631–3641. DOI: 10.1021/ja021012i.
  • Lu, W. Synthesis of Amino-Acid Surfactants and Their Corrosion Inhibition on the Surface of Aluminum Alloy[D]. Chemical Engineering and Technology Inner Mongolia University of Science & Technology: Baotou, China, 2020.
  • Zhu, W.; Zheng, X. Preparation of Starch Grafted Fluid Loss Agent ESt-g-NAA via Inverse Emulsion Polymerization and its Resistance Performance to High Temperature, Salt and Calcium.Drilling Fluid & Completion Fluid 2020, 1–11.
  • Zhu, W.; Zheng, X.; Li, G. Micro-Bubbles Size, Rheological and Filtration Characteristics of Colloidal Gas Aphron (CGA) Drilling Fluids for High Temperature Well: Role of Attapulgite. J. Petrol. Sci. Eng. 2020, 186, 106683. DOI: 10.1016/j.petrol.2019.106683.
  • Gangsen, L.; Lifang, C.; Peiyi, W.; Shuai, C.; Ruijuan, W. Study on Surface Active and Dynamic Surface Tension of K12 and AEO9 /6501 Complex Systems. J. Light Ind. 2016, 31, 51.
  • Dai, S.; Gong, Y.; Wang, F.; Hu, P. Synthesis and Interface Activity of a Series of Carboxylic Quaternary Ammonium Surfactants in Hydraulic Fracturing. Geofluids. 2019, 2019, 1–11. DOI: 10.1155/2019/4258643.
  • Zhang, W.; Zhou, L.; Ding, Z. Synthesis and Performance of Nonionic Gemini Surfactant Di-Glycerol 2,9-Dihexyldecanedioate. J. Dispersion Sci. Technol. 2009, 30, 1161–1166. DOI: 10.1080/01932690802701655.
  • Liu, P.; Lai, X.; Wang, L.; Wang, J.; Ma, S.; Miao, L. Synthesis and Application of a pH-Responsive Amino Acid Acidizing Foaming Agent. Fine Chem. 2019, 36, 442–448.
  • Keshavarzi, B.; Javadi, A.; Bahramian, A.; Miller, R. Formation and Stability of Colloidal Gas Aphron Based Drilling Fluid considering Dynamic Surface Properties. J. Petrol. Sci. Eng. 2019, 174, 468–475. DOI: 10.1016/j.petrol.2018.11.057.
  • Sun, J.; Jing, J.; Jing, P.; Li, Y.; Chen, X.; Hu, H. Preparation and Performance Evaluation of Stable Foamy Heavy Oil. Pet. Chem. 2017, 57, 284–292. DOI: 10.1134/S0965544117020141.
  • Chen, S.; Hou, Q.; Zhu, Y.; Wang, D.; Li, W. On the Origin of Foam Stability: Understanding from Viscoelasticity of Foaming Solutions and Liquid Films. J. Dispersion Sci. Technol. 2014, 35, 1214–1221. DOI: 10.1080/01932691.2013.833102.
  • Georgieva, D.; Cagna, A.; Langevin, D. Link between Surface Elasticity and Foam Stability. Soft Matter. 2009, 5, 2063–2071. DOI: 10.1039/b822568k.
  • Varade, S. R.; Ghosh, P. Foaming in Aqueous Solutions of Mixtures of a Zwitterionic and a Cationic Surfactant in Presence of an Electrolyte. J. Dispersion Sci. Technol. 2020, 41, 1174–1191. DOI: 10.1080/01932691.2019.1614944.
  • Li, W.; Wei, F.; Xiong, C.; Ouyang, J.; Dai, M.; Shao, L.; Lv, J. Effect of Salinities on Supercritical CO2 Foam Stabilized by a Betaine Surfactant for Improving Oil Recovery. Energy Fuels. 2019, 33, 8312–8322. DOI: 10.1021/acs.energyfuels.9b01688.
  • Farajzadeh, R.; Andrianov, A.; Krastev, R.; Hirasaki, G. J.; Rossen, W. R. Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery. Adv. Colloid Interface Sci. 2012, 183, 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.