411
Views
11
CrossRef citations to date
0
Altmetric
Articles

Highly selective and sensitive colorimetric detection of arsenic(III) in aqueous solution using green synthesized unmodified gold nanoparticles

, &
Pages 132-143 | Received 26 Jan 2021, Accepted 04 May 2021, Published online: 06 Jun 2021

References

  • Liao, T.; Xi, Y.; Zhang, L.; Li, J.; Cui, K. Removal of Toxic Arsenic (as (III)) from Industrial Wastewater by Ultrasonic Enhanced Zero-Valent Lead Combined with CuSO4. J. Hazard. Mater. 2021, 408, 124464. DOI: 10.1016/j.jhazmat.2020.124464.
  • Chen, B.; Liu, Q.; Popowich, A.; Shen, S.; Yan, X.; Zhang, Q.; Li, X.; Weinfeld, M.; Cullen, W. R.; Le, X. C. Therapeutic and Analytical Applications of Arsenic Binding to Proteins. Metallomics 2015, 7, 39–55. DOI: 10.1039/c4mt00222a.
  • Nath, P.; Priyadarshni, N.; Chanda, N. Europium-Coordinated Gold Nanoparticles on Paper for the Colorimetric Detection of Arsenic (III, V) in Aqueous Solution. ACS Appl. Nano Mater. 2018, 1, 73–81. DOI: 10.1021/acsanm.7b00038.
  • Li, J.; Zheng, B.; Zheng, Z.; Li, Y.; Wang, J. Highly Sensitive and Selective Colorimetric and SERS Dual-Mode Detection of Arsenic (III) Based on Glutathione Functionalized Gold Nanoparticles. Sens. Actuat. Rep. 2020, 2, 100013. DOI: 10.1016/j.snr.2020.100013.
  • Zheng, B.; Li, J.; Zheng, Z.; Zhang, C.; Huang, C.; Hong, J.; Li, Y.; Wang, J. Rapid Colorimetric Detection of Arsenic (III) by Glutathione Functionalized Gold Nanoparticles Based on RGB Extracting System. Opt. Laser Technol. 2021, 133, 106522. DOI: 10.1016/j.optlastec.2020.106522.
  • Gong, L.; Du, B.; Pan, L.; Liu, Q.; Yang, K.; Wang, W.; Zhao, H.; Wu, L.; He, Y. Colorimetric Aggregation Assay for Arsenic (III) Using Gold Nanoparticles. Microchim. Acta 2017, 184, 1185–1190. DOI: 10.1007/s00604-017-2122-6.
  • Liu, Z. G.; Huang, X. J. Voltammetric Determination of Inorganic Arsenic. Trends Anal. Chem. 2014, 60, 25–35. DOI: 10.1016/j.trac.2014.04.014.
  • Sunil, H. K.; Bhavana, V. M.; Rahul, K. S.; Hemant, P. B.; Satish, V. P. Extracellular Red Monascus Pigment-Mediated Rapid One Step Synthesis of Silver Nanoparticles and its Application in Biomedical and Environment. Bioproc. Biosyst. Eng. 2018, 41, 715–727. DOI: 10.1007/s00449-018-1905-4.
  • Mane, P. C.; Shinde, M. D.; Varma, S.; Chaudhari, B. P.; Amanullah, F.; Shahabuddin, M.; Dinesh, P. A.; Abdullah, M. A.; Chaudhari, R. D. Highly Sensitive Label-Free Bio-Interfacial Colorimetric Sensor Based on Silk Fibroin-Gold Nanocomposite for Facile Detection of Chlorpyrifos Pesticide. Sci. Rep. 2020, 10, 4198. DOI: 10.1038/s41598-020-61130-y.
  • Sarkar, P. K.; Halder, A.; Polley, N.; Pal, S. K. Development of Highly Selective and Efficient Prototype Sensor for Potential Application in Environmental Mercury Pollution Monitoring. Water. Air. Soil Pollut. 2017, 228, 314. DOI: 10.1007/s11270-017-3479-1.
  • Choudhary, M. K.; Garg, S.; Kaur, A.; Kataria, J.; Sharma, S. Green Biomimetic Silver Nanoparticles as Invigorated Colorimetric Probe for Hg2+ Ions: A Cleaner Approach Towards Recognition of Heavy Metal Ions in Aqueous Media. Mater. Chem. Phys. 2020, 240, 122164–122169. DOI: 10.1016/j.matchemphys.2019.122164.
  • Gaurav, V.; Shreya, B.; Parimal, P. Synthesis of Calixarene-Capped Silver Nanoparticles Colorimetric and Amperometric Detection of Mercury (HgII, Hg0). ACS Omega 2019, 4, 3860–3870. DOI: 10.1021/acsomega.8b03299.
  • Rahman, A.; Kumar, S.; Bafana, A.; Dahoumane, S. A.; Jeffryes, C. Biosynthesis Conversion of Ag+ to Highly Stable Ag0 Nanoparticle by Wild Type and Cell Wall Deficient Strains of Chlamydomonas Rein Hardtii. Molecules 2018, 24, 98. DOI: 10.3390/molecules24010098.
  • Guan, H.; Liu, X.; Wang, W.; Liang, J. Direct Colorimetric Biosensing of Mercury (II) Ion Based on Aggregation of Poly-(γ-Glutamic Acid)-Functionalized Gold Nanoparticles. Spectrochim. Acta 2014, 121, 527–532. DOI: 10.1016/j.saa.2013.10.107.
  • Mushiana, T.; Mabuba, N.; Idris, A. O.; Peleyeju, G. M.; Orimolade, B. O.; Nkosi, D.; Ajayi, R. F.; Arotiba, O. A. An Aptasensor for Arsenic on a Carbon-Gold Bi-Nanoparticles Platform. Sens. Biosens. Res. 2019, 24, 100280. DOI: 10.1016/j.sbsr.2019.100280.
  • Gao, Z.; Qiu, Z.; Lu, M.; Shu, J.; Tang, D. Hybridization Chain Reaction-Based Colorimetric Aptasensor of Adenosine 5’-Triphosphate on Unmodified Gold Nanoparticles and Label-Free Hairpin Probes. Biosens. Bioelectron. 2017, 89, 1006–1012. DOI: 10.1016/j.bos.2016.10.043.
  • Rao, B. L.; Gowda, M.; Asha, S.; Byrappa, K.; Narayana, B.; Somashekhra, R.; Wang, Y.; Madhu, L. N.; Sangappa, Y. Rapid Synthesis of Gold Nanoparticles Using Silk Fibroin: Characterization, Antibacterial Activity, and Anticancer Properties. Gold Bull. 2017, 50, 289–297. DOI: 10.1007/s13404-017-0218-8.
  • Ranjana, R.; Parushuram, N.; Harisha, K. S.; Asha, S.; Sangappa, Y. Silk Fibroin a Bio-Template for Synthesis of Different Shaped Gold Nanoparticles: Characterization and Ammonia Detection Application. Mater. Today 2020, 27, 434–439. DOI: 10.1016/j.matpr.2019.11.259.
  • Gao, Z.; Deng, K.; Wang, X. D.; Miro, M.; Tang, D. High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243–18250. DOI: 10.1021/am505342r.
  • Harisha, K. S.; Parushuram, N.; Ranjana, R.; Lavita, J. M.; Narayana, B.; Sangappa, Y. Characterization and Antibacterial Properties of Biogenic Spherical Silver Nanoparticles. Mater. Today 2021, 42, 405–409. DOI: 10.1016/j.matpr.2020.09.654.
  • Ren, R.; Cai, G.; Yu, Z.; Zeng, Y.; Tang, D. Metal–Polydopamine Framework: An Innovative Single-Generation Tag for Colorimetric Immunoassay. Anal. Chem. 2018, 90, 11099–11105. DOI: 10.1021/acs.analchem.8b03538.
  • Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules. Anal. Chem. 2013, 85, 6945–6952. DOI: 10.1021/ac401433p.
  • Lai, W.; Tang, D.; Zhuang, J.; Chen, G.; Yang, H. Magnetic Bead-Based Enzyme-Chromogenic Substrate System for Ultrasensitive Colorimetric Immunoassay Accompanying Cascade Reaction for Enzymatic Formation of Squaric Acid-Iron (III) Chelate. Anal. Chem. 2014, 86, 5061–5068. DOI: 10.1021/ac500738a.
  • Narendra, G.; Surva, P. M.; Arun, K. S.; Ajit, K. K.; Writam, B.; Subhas, C. K.; Samit, K. R. Transparent and Flexible Resistive Switching Memory Devices with a Very High On/Off Ratio Using Gold Nanoparticles Embedded in a Silk Protein Matrix. Nanotechnology 2013, 24, 345202. DOI: 10.1088/0957-4484/24/34/345202.
  • Raman, S.; L-Cysteine, S. Functionalized Gold Nanoparticles as a Colorimetric Sensor for Ultrasensitive Detection of Toxic Metal Ion Cadmium. Mater. Today 2020, 24, 2375–2382. DOI: 10.1016/j.matpr.2020.03.767.
  • Mathias, L.; Sabine, M.; Johannes, R.; Pompe, W. Colorimetric as(V) Detection Based on S-Layer Functionalized Gold Nanoparticles. Talanta 2015, 144, 241–246. DOI: 10.1016/j.talanta.2015.05.082.
  • Arocikia Jency, D.; Parimaladevi, R.; Vasant Sathe, G.; Umadevi, M. Glutathione Functionalized Gold Nanoparticles as Efficient Surface Enhanced Raman Scattering Substrate for Poly-Chlorinated Biphenyl Detection. J. Clust. Sci. 2018, 29, 281–287. DOI: 10.1007/s10876-017-1323-9.
  • Bijoy, S. B.; Rajib, B. Selective Detection of Arsenic (III) Based on Colorimetric Approach in Aqueous Medium Using Functionalized Gold Nanoparticles Unit. Mater. Res. Expr. 2018, 5, 015059. DOI: 10.1088/2053-1591/111661.
  • Gonzalez, R. S.; Varela, L. G.; Barrera, P. B. Functionalized Gold Nanoparticles for the Detection of Arsenic in Water. Talanta 2014, 118, 262–269. DOI: 10.1016/j.talanta.2013.10.029.
  • Luma, C. L.; Lima, D.; Ana, C. M. H.; Bianca, S. S.; Calaca, G. N.; Simas, F. F.; Pereira, R. P.; Iacomini, M.; Adriano, G. V.; Pessoa, C. A. Gold Nanoparticles Capped with Polysaccharides Extracted from Pineapple Gum: Evaluation of Their Hemocompatibility and Electrochemical Sensing Properties. Talanta 2021, 223, 121634. DOI: 10.1016/J.TALANTA.2020.121634.
  • Harisha, K. S.; Shilpa, M.; Asha, S.; Parushuram, N.; Harish Kumar, D. C.; Narayana, B.; Sangappa, Y. Green Synthesis of Silver Nanoparticles Using Natural Biomaterials. AIP Conf. Proc. 2019, 2142, 150012. DOI: 10.1063/1.15122561.
  • Huawei, H.; Gang, T.; Yejing, W.; Rui, C.; Pengchao, G.; Liqun, C.; Hua, Z.; Ping, Z.; Qingyou, X. In Situ Green Synthesis and Characterization of Sericin-Silver Nanoparticles Composite with Effective Antibacterial Activity and Good Biocompatibility. Mater. Sci. Eng. C 2019, 80, 509–516. DOI: 10.1016/j.msec.2017.06.015.
  • Bijoy, S. B.; Kumar, D. N.; Biswas, R. Functionalized Silver Nanoparticles as an Effective Medium towards Trace Determination of Arsenic (III) in Aqueous Solution. Results. Phys. 2019, 12, 2061–2065. DOI: 10.1016/j.rinp.2019.02.044.
  • Harisha, K. S.; Parushuram, N.; Asha, S.; Suma, S. B.; Narayana, B.; Sangappa, Y. Eco-Synthesis of Gold Nanoparticles by Sericin Derived from Bombyx Mori Silk and Catalytic Study on Degradation of Methylene Blue. Partic. Sci. Technol. 2021, 39, 131–140. DOI: 10.1080/02726351.2019.1666951.
  • Feng, Y.; Lin, J.; Niu, L.; Wang, Y.; Cheng, Z.; Sun, X.; Li, M. High Molecular Weight Silk Fibroin Prepared by Papain Degumming. Polymers 2020, 12, 2105–2101. DOI: 10.3390/polym12092105.
  • Hu, J.; Wang, Z.; Xu, S. Preparation and Characterization of Sericin Powder Extracted from Silk Industry Wastewater. Food Chem. 2007, 103, 1255–1262. DOI: 10.1016/j.foodchem.2006.10.042.
  • Parushuram, N.; Ranjana, R.; Harisha, K. S.; Shilpa, M.; Narayana, B.; Neelakandan, R.; Sangappa, Y. Silk Fibroin and Silk Fibroin-Gold Nanoparticle Nanocomposite Films: Sustainable Adsorbents for Methylene Blue Dye. J. Dispers. Sci. Technol. 2020, DOI: 10.1080/01932691.2020.1848578.
  • Madhukumar, R.; Harisha, K. S.; Asha, S.; Wang, Y.; Sangappa, Y. Gamma Assisted Synthesis and Characterization of Colloidal SF-AgNPs. AIP Conf. Proc. 2019, 2100, 020029. DOI: 10.1063/1.5098583.
  • Harisha, K. S.; Shilpa, M.; Asha, S.; Parushuram, N.; Ranjana, R.; Narayana, B.; Sangappa, Y. Synthesis of Silver Nanoparticles Using Bombyx Mori Silk Fibroin and Antibacterial Activity. IOP Conf. Ser: Mater. Sci. Eng. 2019, 577, 012008. DOI: 10.1088/1757-899X/577/1/012008.
  • Das, S.; Dhar, B. B. Green Synthesis of Noble Metal Nanoparticles Using Cysteine-Modified Silk Fibroin: Catalysis and Antibacterial Activity. RSC Adv. 2014, 4, 46285–46292. DOI: 10.1039/C4RA06179A.
  • Mahadeva, G.; Harisha, K. S.; Ranjana, T.; Harish, K. V.; Narayana, B.; Byrappa, K.; Sangappa, Y. Synthesis of Gold Nanoparticles Using Silk Fibroin and Their Characterization. AIP Conf. Proc. 2018, 1953, 030184. DOI: 10.1063/1.5032519.
  • Aaman, S.; Manal Ali, B.; El-Shaimaa, A. A.; Izhar, H.; Lihong, L.; Ghulam, M. The Wound Healing and Antibacterial Potential of Triple-Component Nanocomposite (Chitosan-Silver-Sericin) Films Loaded with Moxifloxacin. Int. J. Pharm. 2019, 564, 22–38. DOI: 10.1016/j.ijpharm.2019.04.046.
  • Rao, A.; Mahajan, K.; Bankar, A.; Srikanth, R.; Kumar, A. R.; Suresh, G.; Smita, Z. Facile Synthesis of Size-Tunable Gold Nanoparticles by Pomegranate (Punica Granatum) Leaf Extract: Applications in Arsenate Sensing. Mater. Res. Bull. 2013, 48, 1166–1173. DOI: 10.1016/j.materresbull.2012.12.025.
  • Luo, Y.; Zhao, X.; Cai, P.; Pan, Y. One-Pot Synthesis of an Anionic Cyclodextrin-Stabilized Bifunctional Gold Nanoparticles for Visual Chiral Sensing and Catalytic Reduction. Carbohydrates 2020, 237, 116127. DOI: 10.1016/j.carbpol.2020.116127.
  • Parushuram, N.; Asha, S.; Ranjana, R.; Harisha, K. S.; Shilpa, M.; Narayana, B.; Sangappa, Y. Biosynthesis of Spherical Gold Nanoparticles and Their Characterization. IOP Conf. Ser: Mater. Sci. Eng. 2019, 577, 012007. DOI: 10.1088/1757-899X/577/1/012007.
  • Krishna, K.; Harisha, K. S.; Neelakandan, R.; Sangappa, Y. Fabrication and Conductivity Study of Silver Nanoparticles Loaded Polyvinyl Alcohol (PVA-AgNPs) Nanofibers. Mater. Today 2021, 42, 515–520. DOI: 10.1016/j.matpr.2020.10.481.
  • Ranjana, R.; Parushuram, N.; Harisha, K. S.; Narayana, B.; Sangappa, Y. Photo-Driven Synthesis of Anisotropic Gold Nanoparticles Using Silk Fibroin-Cell Viability Activities in Lymphocyte and Jurkat Cancer Cells. Bionanoscience. 2020, 10, 864–875. DOI: 10.1007/s12668-020-00772-8.
  • Megha, P. D.; Reshma, V. P.; Sayali, S. H.; Kiran, D. P. Bacterium Mediated Facile and Green Method for Optimized Biosynthesis of Gold Nanoparticles for Simple and Visual Detection of Two Metal Ions. J. Clust. Sci. 2021, 32, 341–350. DOI: 10.1007/s10876-020-01793-9.
  • Ranjana, R.; Parushuram, N.; Harisha, K. S.; Asha, S.; Narayana, B.; Mahendra, M.; Sangappa, Y. Fabrication and Characterization of Conductive Silk Fibroin-Gold Nanocomposite Films. J. Mater. Sci: Mater. Electron. 2020, 31, 249–264. DOI: 10.1007/s10854-019-02485-5.
  • Yoon, S. J.; Nam, Y. S.; Lee, Y.; Oh, I. H.; Lee, K. B. A Dual Colorimetric Probe for Rapid Environmental Monitoring of Hg2+ and As3+ Using Gold Nanoparticles Functionalized with D-Penicillamine. RSC Adv. 2021, 11, 5456–5465. DOI: 10.1039/D0RA08525A.
  • Anita, K.; Manthan, P.; Athar, M.; Manoj, V.; Nidhi, V.; Pandya, A.; Jha, P. C.; Kinjal, B.; Rakesh, R.; Jain, V. Colorimetric and Electrochemical Sensing of as (III) Using Calix [4] Pyrrole Capped Gold Nanoparticles and Evaluation of its Cytotoxic Activity. J. Incl. Phenom. Macrocycl. Chem. 2020, 98, 29–41. DOI: 10.1007/s10847-020-01005-x.
  • Weiwen, H.; Wang, Y.; Lumei, W.; Chaoqiang, P.; Guoqing, S. Colorimetric Detection of Ciprofloxacin in Aqueous Solution Based on an Unmodified Aptamer and the Aggregation of Gold Nanoparticles. Anal. Methods 2021, 13, 90–98. DOI: 10.1039/D0AY01811B.
  • Shivananda, C. S.; Asha, S.; Madhukumar, R.; Satish, S.; Narayana, B.; Sangappa, Y. Biosynthesis of Colloidal Silver Nanoparticles: Their Characterization and Potentials Antibacterial Activity. Marcomol. Res. 2016, 24, 684–690. DOI: 10.1007/s13233-016-4086-5.
  • Pu, S.; Haifeng, S.; Xiandeng, H.; Kailai, X. A Colorimetric Assay for the Determination of Trace Arsenic Based on In-Situ Formation of AuNPs with Synergistic Effect of Arsine and Iodide. Anal. Chem. Acta 2021, 1144, 61–67. DOI: 10.1016/j.aca.2020.11.055.
  • Balasurya, S.; Ahmad, P.; Thomas, A. M.; Raju, L. L.; Das, A.; Sudheer Khan, S. Rapid Colorimetric and Spectroscopy Based Sensing of Mercury by Surface Functionalized Silver Nanoparticles in the Presence of Tyrosine. Opt. Commun. 2020, 464, 125512–125518. DOI: 10.1016/j.optcom.2020.125512.
  • Syed, A.; Marraiki, N.; Sarah, A.; Elgorban, A. M.; Yassin, M. T. A Potent Multifunctional MnS/Ag-Polyvinylprrolidone Nanocomposite for Enhanced Detection of Hg2+ from Aqueous Samples and its Photocatalytic and Antibacterial Applications. Spectrochim. Acta A 2021, 244, 118844–118841. DOI: 10.1016/j.saa.2020.118844.
  • BiJoy, S. B.; Rajib, B.; Pritam, D. A. Green Colorimetric Approach towards Detection of Arsenic (III): A Pervasive Environment Pollutant. Opt. Laser Technol. 2019, 111, 825–829. DOI: 10.1016/j.optlastec.2018.09.023.
  • Shenshan, Z.; Minglei, Y.; Jing, L.; Lumei, W.; Pei, Z. Colorimetric Detection of Trace Arsenic (III) Ion Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles. Aust. J. Chem. 2014, 67, 813–818. DOI: 10.1071/CH13512.
  • Wu, Y.; Faze, W.; Shenshan, Z.; Liu, L.; Yanfang, L.; Pei, Z. Regulation of Hemin Peroxidase Catalytic Activity by Arsenic-Binding Aptamers for the Colorimetric Detection of Arsenic (III). RSC Adv. 2013, 3, 25614. DOI: 10.1039/C3RA44346A.
  • Wu, Y.; Shenshan, Z.; Faze, W.; Lan, H.; Zhi, W.; Pei, Z. Cataionic Polymers and Aptamers Mediated Aggregation of Gold Nanoparticles for the Colorimetric Detection of Arsenic (III) in Aqueous Solution. Chem. Commun. 2012, 48, 4459–4461. DOI: 10.1039/C2CC30384A.
  • Thao Nguyen, N. L.; Park, C. Y.; Park, J. P.; Kailasa, S. K.; Park, T. J. Synergistic Molecular Assembly of an Aptamer and Surfactant on Gold Nanoparticles for the Colorimetric Detection of Trace Levels of As3+ Ions in Real Samples. New J. Chem. 2018, 42, 11530–11538. DOI: 10.1039/C8NJ01097H.
  • Shrivas, K.; Shankar, R.; Dewangan, K. Gold Nanoparticles as a Localized Surface Plasman Resonance Based Chemical Sensor for on-Site Colorimetric Detection of Arsenic in Water Samples. Sens. Actuat. B Chem. 2015, 220, 1376–1383. DOI: 10.1016/j.snb.2015.07.058.
  • Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; et al. Use of Gold Nanoparticles in a Sample Colorimetric and Ultrasensitive Dynamic Light Scattering Assay: Selective Detection of Arsenic in Groundwater. Angew. Chem. 2009, 48, 9668–9671. DOI: 10.1002/ange.200903958.
  • Geetanjali, M. S.; Megha, P. D.; Tukaram, D. D.; Kiran, D. P. Selective Interaction between Phytomediated Anionic Silver Nanoparticles and Mercury Leading to Amalgam Formation Enables Highly Sensitive, Colorimetric and Memristor-Based Detection of Mercury. Sci. Rep. 2020, 10, 2037. DOI: 10.1038/s41598-020-58844-4.
  • Bu, L.; Xie, Q.; Ming, H. Gold Nanoparticles Decorated Three-Dimensional Porous Graphite Carbon Nitrides for Sensitive Anodic Stripping Voltammetric Analysis of Trace Arsenic (III). J. Alloys Compd. 2020, 823, 153723. DOI: 10.1016/j.jallcom.2020.153723.
  • Kamlesh, S.; Patel, S.; Deepak, S.; Santosh, S. T.; Tarun, K. P.; Tushar, K.; Dewangan, K.; Manmohan, L. S.; Jayant, N.; Kumar, S. Colorimetric and Smartphone-Integrated Paper Device for on-Site Determination of Arsenic(III) Using Sucrose Modified Gold Nanoparticles as Nanoproble. Microchim. Acta 2020, 187, 173. DOI: 10.1007/s00604-020-4129-7.
  • Shen, S.; Li, X.; William, R. C.; Michael, W.; Le, X. C. Arsenic Binding to Proteins. Chem. Rev. 2013, 113, 7769–7792. DOI: 10.1021/cr300015c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.