61
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structural and activity changes of xanthine oxidase induced by cetyltrimethylammonium bromide and its Gemini homologue bis(cetyldimethylammonium)hexane dibromide: a comparative study

Pages 157-164 | Received 01 Feb 2021, Accepted 04 May 2021, Published online: 09 Jun 2021

References

  • Ananthapadmanabhan, K. P. In Interactions of Surfactants with Polymers and Proteins; Goddard, E. D., Ananthapadmanabhan, K. P., Eds.; CRC Press, Inc.: London, UK, 1993; Chapter 8.
  • Jones, M. N. Surfactant Interactions with Biomembranes and Proteins. Chem. Soc. Rev. 1992, 21, 127–136. [Database] DOI: 10.1039/cs9922100127.
  • Jones, M. N. In Food Polymers. Gels and Colloids; The Royal Society of Chemistry: Cambridge, UK, 1991; pp 65–80.
  • McClements, D. J. In Food Emulsions: Principles, Practice and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, 2004.
  • Few, A. V.; Ottewill, R. H.; Parreira, H. C. The Interaction between Bovine Plasma Albumin and Dodecyltrimethylammonium Bromide. Biochim. Biophys. Acta. 1955, 18, 136–137. DOI: 10.1016/0006-3002(55)90019-6.
  • Nozaki, Y.; Reynolds, J. A.; Tanford, C. The Interaction of a Cationic Detergent with Bovine Serum Albumin and Other Proteins. J. Biol. Chem 1974, 249, 4452–4459. DOI: 10.1016/S0021-9258(19)42440-X.
  • Takeda, K.; Hachiya, K.; Moriyama, Y. Interaction of Protein with Ionic Surfactants: Part 2; Marcel Dekker: New York, 2002; p 2575.
  • Doehner, W.; Anker, S. D. Xanthine Oxidase Inhibition for Chronic Heart Failure: Is Allopurinol the Next Therapeutic Advance in Heart Failure?. Heart. 2005, 91, 707–709. DOI: 10.1136/hrt.2004.057190.
  • Berry, C. E.; Hare, J. M. Xanthine Oxidoreductase and Cardiovascular Disease: Molecular Mechanisms and Pathophysiological Implications. J. Physiol. 2004, 555, 589–606. DOI: 10.1113/jphysiol.2003.055913.
  • Harrison, R. Structure and Function of Xanthine Oxidoreductase: Where Are we Now? Free Rad. Biol. Med 2002, 33, 774–797. [Database] DOI: 10.1016/S0891-5849(02)00956-5.
  • McCord, J. M. Oxygen-Derived Free Radicals in Postischemic Tissue Injury. N Engl. J. Med. 1985, 312, 159–163.
  • Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T.; Pai, E. Crystal Structures of Bovine Milk Xanthine Dehydrogenase And Xanthine Oxidase: Structure-Based Mechanism of Conversion. Proc. Natl. Acad. Sci. USA. 2000, 97, 10723–10728. DOI: 10.1073/pnas.97.20.10723.
  • Hille, R. The Mononuclear Molybdenum Enzymes. Chem. Rev. 1996, 96, 2757–2816. [Database] DOI: 10.1021/cr950061t.
  • Huber, R.; Hof, P.; Duarte, R. O.; Moura, J. J.; Moura, I.; Liu, M. Y.; LeGall, J.; Hille, R.; Archer, M.; Romao, M. J. A Structure-Based Catalytic Mechanism for the Xanthine Oxidase Family of Molybdenum Enzymes. J. Proc. Natl. Acad. Sci. USA. 1996, 93, 8846–8851. DOI: 10.1073/pnas.93.17.8846.
  • Doonan, C. J.; Stockert, A.; Hille, R.; George, G. N. Nature of the Catalatically Labile Oxygen at the Active Site of Xanthine Oxidase. J. Am. Chem. Soc. 2005, 127, 4518–4522. DOI: 10.1021/ja042500o.
  • Lee, C.; Liu, X.; Zweier, J. L. Regulation of Xanthine Oxidase by Nitric Oxide and Peroxynitrite. J. Biol. Chem. 2000, 275, 9369–9376. DOI: 10.1074/jbc.275.13.9369.
  • Fernandes, A. S.; Gaspar, J.; Cabral, M. F.; Caneiras, C.; Guedes, R.; Rueff, J.; Castro, M. Macrocyclic Copper(II) Complexes: Superoxide Scavenging Activity, Structural Studies and Cytotoxicity Evaluation. J. Inorg. Biochem. 2007, 101, 849–858. DOI: 10.1016/j.jinorgbio.2007.01.013.
  • Schmidt, H. M.; Kelley, E. E.; Straub, A. C. The Impact of Xanthine Oxidase (XO) on Hemolytic Diseases. Redox Biol. 2019, 21, 101072. DOI: 10.1016/j.redox.2018.101072.
  • Sau, A. K.; Mondal, M. S.; Mitra, S. Interaction of Cu2+ Ion with Milk Xanthine Oxidase. Biochim. Biophys. Acta. 2001, 1544, 89–95. DOI: 10.1016/S0167-4838(00)00207-7.
  • Mondal, M. S.; Mitra, S. The Inhibition of Bovine Xanthine Oxidase Activity by Hg2+ and Other Metal Ions. J Inorg Biochem. 1996, 62, 271–279. DOI: 10.1016/0162-0134(95)00160-3.
  • Ghio, A. J.; Kennedy, T. P.; Stonehuerner, J.; Carter, J. D.; Skinner, K. A.; Parks, D. A.; Hoidal, J. R. Iron Regulates Xanthine Oxidase Activity in the Lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 283, L563–L572. DOI: 10.1152/ajplung.00413.2000.
  • Lovstad, R. A. A Kinetic Study on Iron Stimulation of the Xanthine Oxidase Dependent Oxidation of Ascorbate. BioMetals. 2003, 16, 435–439. DOI: 10.1023/A:1022523920998.
  • Kumar, D.; Rub, M. A. Study of the Interaction between Ninhydrin and Chromium(III)-Amino Acid in an Aqueous-Micellar System: Influence of Gemini Surfactant Micelles. J. Mol. Liq. 2020, 301, 112373. DOI: 10.1016/j.molliq.2019.112373.
  • Kumar, D.; Rub, M. A. R. Catalytic influence of 16-s-16 Gemini surfactants on the rate constant of histidine and ninhydrin. Soc. Open Sci. 2020, 7, 191648. DOI: 10.1098/rsos.191648.
  • Mangat, C. K.; Kaur, S. Synthesis, Characterization, and Surface Properties of Cationic Gemini Surfactants. J. Dispers. Sci. Technol. 2014, 35, 1528–1536. DOI: 10.1080/01932691.2013.840241.
  • Ahmed, S. M.; Khidr, T. T.; Ismail, D. A. Effect of Gemini Surfactant Additives on Pour Point Depressant of Crude Oil. J. Dispers. Sci. Technol 2018, 39, 1160–1164. DOI: 10.1080/01932691.2017.1385483.
  • Kumar, D.; Rub, M. A. Study of Reaction Rate between Zinc(II)–Histidine [Zn(II)–His] + Complex and Ninhydrin: Effect of Three Dicationic Gemini (Alkanediyl-α,ω-Type) Surfactants. Ind. Eng. Chem. Res. 2020, 59, 11072–11079. DOI: 10.1021/acs.iecr.0c00678.
  • Kumar, D.; Rub, M. A. Influence of Dimeric Gemini Surfactant Micelles on the Study of Nickel-Glycylleucine Dipeptide and Ninhydrin. J. Dispers. Sci. Technol. 2020, 41, 1559–1567. DOI: 10.1080/01932691.2019.1627886.
  • Zana, R., Xia, J., Gemini Surfactants; Eds.; Marcel Dekker: New York, 2003.
  • Zana, R. Dimeric and Oligomeric Surfactants. Behavior at Interfaces and in Aqueous Solution: A Review. Adv. Colloid Interface Sci. 2002, 97, 205–253. [Database] DOI: 10.1016/S0001-8686(01)00069-0.
  • Siddiqui, U. S.; Ghosh, G. Kabir-ud-Din. Langmuir. 2006, 22, 9874–9878. DOI: 10.1021/la061694d.
  • Wettig, S. D.; Verrall, R. E.; Foldvari, M. Gemini Surfactants: A New Family of Building Blocks for Non-Viral Gene Delivery Systems. Curr. Gene. Ther. 2008, 8, 9–23. DOI: 10.2174/156652308783688491.
  • Li, Y.; Wang, X.; Wang, Y. Comparative Studies on Interactions of Bovine Serum Albumin with Cationic Gemini and Single-Chain Surfactants. J. Phys. Chem. B. 2006, 110, 8499–8505. DOI: 10.1021/jp060532n.
  • Pi, Y.; Shang, Y.; Peng, C.; Liu, H.; Hu, Y.; Jiang, J. Interactions Between Bovine Serum Albumin and Gemini Surfactant Alkanediyl‐α, ω‐Bis(Dimethyldodecyl‐Ammonium Bromide). Biopolymers. 2006, 83, 243–249. DOI: 10.1002/bip.20552.
  • Wu, D.; Xu, G.; Feng, Y.; Li, Y. Aggregation Behaviors of Gelatin with Cationic Gemini Surfactant at Air/Water Interface. Int. J. Biol. Macromol 2007, 40, 345–350. DOI: 10.1016/j.ijbiomac.2006.09.004.
  • Wu, D.; Xu, G.; Sun, Y.; Zhang, H.; Mao, H.; Feng, Y. Interaction between Proteins and Cationic Gemini Surfactant. Biomacromolecules 2007, 8, 708–712. DOI: 10.1021/bm061033v.
  • Gull, N.; Sen, P.; Khan, R. H. Kabir-Ud-Din, Spectroscopic Studies on the Comparative Interaction of Cationic Single-Chain and Gemini Surfactants with Human Serum Albumin. J. Biochem. 2009, 145, 67–77.
  • Gull, N.; Sen, P.; Khan, R. H. Kabir-Ud-Din, Interaction of Bovine (BSA), Rabbit (RSA), and Porcine (PSA) Serum Albumins with Cationic Single-Chain/Gemini Surfactants: A Comparative Study. Langmuir. 2009, 25, 11686–11691. DOI: 10.1021/la901639h.
  • Mir, M. A.; Khan, J. M.; Dar, A. A.; Khan, R. H.; Rather, G. M. Interaction of Cetyltrimethylammonium Bromide and Its Gemini Homologue Bis(cetyldimethylammonium)butane Dibromide with Xanthine Oxidase. J. Phy. Chem. B 2012, 116, 5711–5718. DOI: 10.1021/jp207803c.
  • Mir, M. A. Effect of Cetyltrimethylammonium Bromide and its Gemini Homologue Bis(Cetyldimethylammonium)Butane Dibromide on Activity of Xanthine Oxidase. J. Dispers. Sci. Technol. 2018, 39, 1121–1125. DOI: 10.1080/01932691.2017.1383269.
  • Akram, M.; Bhat, I. A.; Bhat, W. F. Kabir-Ud-Din, Interaction of a Green Ester-Bonded Gemini Surfactant with Xanthine Oxidase: Biophysical Perspective. Int. J. Biol. Macromol. 2015, 78, 62–71. DOI: 10.1016/j.ijbiomac.2015.03.050.
  • Kabir-Ud-Din, Fatma, W.; Khan, Z. A.; Dar, A. A. 1H NMR and Viscometric Studies on Cationic Gemini Surfactants in Presence of Aromatic Acids and Salts. J. Phys. Chem. B. 2007, 111, 8860–8867. DOI: 10.1021/jp070782j.
  • Massey, V.; Brumby, P. E.; Komai, H.; Palmer, G. Studies on Milk Xanthine Oxidase. J. Biol. Chem. 1969, 244, 1682–1691. DOI: 10.1016/S0021-9258(18)91738-2.
  • Nguyen, M. T. T.; Awale, S.; Tezuka, Y.; Ueda, J.; Tran, Q. L.; Kadota, S. Xanthine Oxidase Inhibitors from the Flowers of Chrysanthemum sinense. Planta Med. 2006, 72, 46–51. DOI: 10.1055/s-2005-873181.
  • Moulik, S. P.; Ghosh, S. Surface Chemical and Micellization Behaviours of Binary and Ternary Mixtures of Amphiphiles (Triton X-100, Tween-80 and CTAB) in Aqueous Medium. J. Mol. Liq. 1997, 72, 145–161. DOI: 10.1016/S0167-7322(97)00036-6.
  • Ghosh, S.; Moulik, S. P. Interfacial and Micellization Behaviors of Binary and Ternary Mixtures of Amphiphiles (Tween-20, Brij-35, and Sodium Dodecyl Sulfate) in Aqueous Medium. J. Colloid Interf. Sci. 1998, 208, 357–366. DOI: 10.1006/jcis.1998.5752.
  • Ghosh, S. Surface Chemical and Micellar Properties of Binary and Ternary Surfactant Mixtures (Cetyl Pyridinium Chloride, Tween-40, and Brij-56) in an Aqueous Medium. J. Colloid Interf. Sci. 2001, 244, 128–138. DOI: 10.1006/jcis.2001.7855.
  • Chakraborty, T.; Ghosh, S.; Moulik, S. P. Micellization and Related Behavior of Binary and Ternary Surfactant Mixtures in Aqueous Medium: Cetyl Pyridinium Chloride (CPC), Cetyl Trimethyl Ammonium Bromide (CTAB), and Polyoxyethylene (10) Cetyl Ether (Brij-56) Derived System. J. Phys. Chem. B. 2005, 109, 14813–14823. DOI: 10.1021/jp044580o.
  • van Voorst Vader, F. Adsorption of Detergents at the Liquid-Liquid Interface. Part 1. Trans. Faraday Soc. 1960, 56, 1067–1077. DOI: 10.1039/tf9605601067.
  • Kabir-Ud-Din, Sheikh, M. S.; Dar, A. A. Analysis of Mixed Micellar and Interfacial Behavior of Cationic Gemini Hexanediyl-1,6-Bis(Dimethylcetylammonium Bromide) with Conventional Ionic and Nonionic Surfactants in Aqueous Medium. J. Colloid Interf. Sci. 2009, 333, 605–612. DOI: 10.1016/j.jcis.2009.01.041.
  • Dar, A. A.; Rather, G. M.; Das, A. R Mixed Micelle Formation and Solubilization Behaviour towards Polycyclic Aromatic Hydrocarbons of Binary and Ternary Cationic-Nonionic Surfactant Mixtures. J. Phys. Chem. B 2007, 111, 3122–3132. DOI: 10.1021/jp066926w.
  • Lu, R. C.; Cao, A. N.; Lai, L. H.; Zhu, B. Y.; Zhao, G. X.; Xiao, J. X. Interaction Between Bovine Serum Albumin and Equimolarly Mixed Cationic-Anionic Surfactants Decyltriethyl-Ammonium Bromide-Sodium Decyl Sulfonate.Colloids Surf. B. 2005, 41, 139–143. DOI: 10.1016/j.colsurfb.2004.11.011.
  • Azum, M.; Rub, M. A.; Asiri, A. M. Interaction of Triblock-Copolymer with Cationic Gemini and Conventional Surfactants: A Physicochemical Study. J. Dispers. Sci. Technol. 2017, 38, 1785–1791. DOI: 10.1080/01932691.2017.1283510.
  • Azum, M.; Ahmed, A.; Rub, M. A.; Asiri, A. M.; Alamery, S. F. Investigation of Aggregation Behavior of Ibuprofen Sodium Drug under the Influence of Gelatin Protein and Salt. J. Mol. Liq. 2019, 290, 111187. DOI: 10.1016/j.molliq.2019.111187.
  • Miller, R.; Fainerman, V. B.; Makievski, A. V.; Kragel, J.; Grigoriev, D. O.; Kazakov, V. N.; Sinyachenko, O. V. Dynamics of Protein and Mixed Protein/Surfactant Adsorption Layers at the Water/Fluid Interface. Adv. Colloid Interf. Sci. 2000, 86, 39–82. DOI: 10.1016/S0001-8686(00)00032-4.
  • Fainerman, V. B.; Zholob, S. A.; Leser, M. E.; Michel, M.; Miller, R. Adsorption from Mixed Ionic Surfactant/Protein Solutions: Analysis of Ion Binding. J. Phys. Chem. B. 2004, 108, 16780–16785. DOI: 10.1021/jp0497099.
  • Sturgeon, B.; Chen, E. Y. R.; Mason, R. P. Immobilized Enzyme Electron Spin Resonance: A Method for Detecting Enzymatically Generated Transient Radicals. Anal. Chem. 2003, 75, 5006–5011. DOI: 10.1021/ac034250k.
  • Zhou, Q.; Rosen, M. J. Molecular Interactions of Surfactants in Mixed Monolayers at the Air/Aqueous Solution Interface and in Mixed Micelles in Aqueous Media: The Regular Solution Approach. Langmuir. 2003, 19, 4555–4562. DOI: 10.1021/la020789m.
  • Chattoraj, D. K. Interfacial Phase and the Gibbs Adsprption Equation. Indian J. Chem. 1981, 20, 941–947.
  • Xia, J.; Zhang, H.; Rigsbee, D. R.; Dubin, P. L.; Shaikh, T. Structural Elucidation of Soluble Polyelectrolyte-Micelle Complexes: Intra- vs Interpolymer Association. Macromolecules. 1993, 26, 2759–2766. DOI: 10.1021/ma00063a019.
  • Deep, S.; Ahluwalia, J. C. Interaction of Bovine Serum Albumin with Anionic Surfactants. Phys. Chem. Chem. Phys. 2001, 3, 4583–4591. DOI: 10.1039/b105779k.
  • Mir, M. A.; Khan, J. M.; Dar, A. A.; Khan, R. H.; Rather, G. M. Effect of Spacer Length of Alkanediyl-α, ω-bis (Dimethylcetylammonium bromide) Gemini Homologues on the Interfacial and Physicochemical Properties of BSA. Colloids Surf. B. 2010, 77, 54–59. DOI: 10.1016/j.colsurfb.2010.01.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.