117
Views
16
CrossRef citations to date
0
Altmetric
Articles

Dynamics of MHD tangent hyperbolic nanofluid with prescribed thermal conditions, random motion and thermo-migration of nanoparticles

, &
Pages 174-188 | Received 11 Feb 2021, Accepted 04 May 2021, Published online: 14 Jun 2021

References

  • Stuart, J. T. Unsteady Boundary Layers (Unsteady Boundary Layer Flow, Considering Stokes, Rayleigh and Heisenberg-Tollmien Theories Application to Oscillatory, Fluctuating, Impulsive and Rotational Effects). In Recent Research on Unsteady Boundary Layers; 1972; pp 1–59.
  • Wang, C. Y. Liquid Film on an Unsteady Stretching Surface. Quart. Appl. Math. 1990, 48, 601–610. DOI: 10.1090/qam/1079908.
  • Ishak, A.; Nazar, R.; Pop, I. Heat Transfer over an Unsteady Stretching Permeable Surface with Prescribed Wall Temperature. Nonlinear Anal. Real World Appl. 2009, 10, 2909–2913. DOI: 10.1016/j.nonrwa.2008.09.010.
  • Fang, T.; Zhang, J.; Yao, S. A New Family of Unsteady Boundary Layers over a Stretching Surface. Appl. Math. Comput. 2010, 217, 3747–3755. DOI: 10.1016/j.amc.2010.09.031.
  • Lakshmisha, K. N.; Venkateswaran, S.; Nath, G. Three-Dimensional Unsteady Flow with Heat and Mass Transfer over a Continuous Stretching Surface. J. Heat Transf. 1988, 110, 590–595. DOI: 10.1115/1.3250533.
  • Nazar, R.; Amin, N.; Filip, D.; Pop, I. Unsteady Boundary Layer Flow in the Region of the Stagnation Point on a Stretching Sheet. Int. J. Eng. Sci. 2004, 42, 1241–1253. DOI: 10.1016/j.ijengsci.2003.12.002.
  • Sharidan, S.; Mahmood, M.; Pop, I. Similarity Solutions for the Unsteady Boundary Layer Flow and Heat Transfer Due to a Stretching Sheet. Appl. Mech. Eng. 2006, 11, 647.
  • Akbar, N. S.; Nadeem, S.; Haq, R. U.; Khan, Z. H. Numerical Solutions of Magnetohydrodynamic Boundary Layer Flow of Tangent Hyperbolic Fluid towards a Stretching Sheet. Indian J. Phys. 2013, 87, 1121–1124. DOI: 10.1007/s12648-013-0339-8.
  • Chen, X.; Yang, W.; Zhang, X.; Liu, F. Unsteady Boundary Layer Flow of Viscoelastic MHD Fluid with a Double Fractional Maxwell Model. Appl. Math. Lett. 2019, 95, 143–149. DOI: 10.1016/j.aml.2019.03.036.
  • Nadeem, S.; Akram, S. Peristaltic Transport of a Hyperbolic Tangent Fluid Model in an Asymmetric Channel. Z. Naturforsch. A. 2009, 64, 559–567. DOI: 10.1515/zna-2009-9-1004.
  • Nonomura, T.; Kitamura, K.; Fujii, K. A Simple Interface Sharpening Technique with a Hyperbolic Tangent Function Applied to Compressible Two-Fluid Modeling. Comput. Phys. 2014, 258, 95–117. DOI: 10.1016/j.jcp.2013.10.021.
  • Hayat, T.; Riaz, A.; Tanveer, A.; Alsaedi, A. Peristaltic Transport of Tangent Hyperbolic Fluid with Variable Viscosity. Therm. Sci. Eng. Prog. 2018, 6, 217–225. DOI: 10.1016/j.tsep.2018.04.002.
  • Khan, M. I.; Kadry, S.; Chu, Y.; Waqas, M. Modeling and Numerical Analysis of Nanoliquid (Titanium Oxide, Graphene Oxide) Flow Viscous Fluid with Second Order Velocity Slip and Entropy Generation. Chin. J. Chem. Eng. 2021, 31, 17–25. DOI: 10.1016/j.cjche.2020.08.005.
  • Waqas, M.; Hayat, T.; Alsaedi, A. A Theoretical Analysis of SWCNT–MWCNT and H2O Nanofluids considering Darcy–Forchheimer Relation. Appl. Nanosci. 2019, 9, 1183–1191. DOI: 10.1007/s13204-018-0833-6.
  • Dogonchi, A. S.; Waqas, M.; Ganji, D. D. Shape Effects of Copper-Oxide (CuO) Nanoparticles to Determine the Heat Transfer Filled in a Partially Heated Rhombus Enclosure: CVFEM Approach. Int. Commun. Heat Mass Transf. 2019, 107, 14–23. DOI: 10.1016/j.icheatmasstransfer.2019.05.014.
  • Waqas, M. Simulation of Revised Nanofluid Model in the Stagnation Region of Cross Fluid by Expanding-Contracting Cylinder. Int. J. Numer. Method H. 2019, 30, 2193–2205. DOI: 10.1108/HFF-12-2018-0797.
  • Hayat, T.; Khalid, H.; Waqas, M.; Alsaedi, A. Numerical Simulation for Radiative Flow of Nanoliquid by Rotating Disk with Carbon Nanotubes and Partial Slip. Comput. Methods Appl. Mech. Eng. 2018, 341, 397–408. DOI: 10.1016/j.cma.2018.06.018.
  • Waqas, M.; Jabeen, S.; Hayat, T.; Khan, M. I.; Alsaedi, A. Modeling and Analysis for Magnetic Dipole Impact in Nonlinear Thermally Radiating Carreau Nanofluid Flow Subject to Heat Generation. J. Magn. Magn. Mater. 2019, 485, 197–204. DOI: 10.1016/j.jmmm.2019.03.040.
  • Khan, W. A.; Waqas, M.; Chammam, W.; Asghar, Z.; Nisar, U. A.; Abbas, S. Z. Evaluating the Characteristics of Magnetic Dipole for Shear-Thinning Williamson Nanofluid with Thermal Radiation. Comput. Methods Programs Biomed. 2020, 191, 105396. DOI: 10.1016/j.cmpb.2020.105396.
  • Waqas, M.; Jabeen, S.; Hayat, T.; Shehzad, S. A.; Alsaedi, A. Numerical Simulation for Nonlinear Radiated Eyring-Powell Nanofluid considering Magnetic Dipole and Activation Energy. Int. Commun. Heat Mass Transf. 2020, 112, 104401. DOI: 10.1016/j.icheatmasstransfer.2019.104401.
  • Khan, M. I.; Khan, W. A.; Waqas, M.; Kadry, S.; Chu, Y. M.; Nazeer, M. Role of Dipole Interactions in Darcy–Forchheimer First-Order Velocity Sip Nanofluid Flow of Williamson Model with Robin Conditions. Appl. Nanosci. 2020, 10, 5343–5350. DOI: 10.1007/s13204-020-01513-9.
  • Abo-Elkhair, R. E.; Bhatti, M. M.; Mekheimer, K. S. Magnetic Force Effects on Peristaltic Transport of Hybrid Bio-Nanofluid (Au-Cu Nanoparticles) with Moderate Reynolds Number: An Expanding Horizon. Int. Commun. Heat Mass Transf. 2021, 123, 105228. DOI: 10.1016/j.icheatmasstransfer.2021.105228.
  • Khan, S. U.; Al-Khaled, K.; Bhatti, M. M. Bioconvection Analysis for Flow of Oldroyd-B Nanofluid Configured by a Convectively Heated Surface with Partial Slip Effects. Surf. Interfaces. 2021, 23, 100982. DOI: 10.1016/j.surfin.2021.100982.
  • Siddiqui, B. K.; Batool, S.; Ul Hassan, Q. M.; Malik, M. Y. Irreversibility Analysis in the Boundary Layer MHD Two Dimensional Flow of Maxwell Nanofluid over a Melting Surface. Ain Shams Eng. J. 2021. DOI: 10.1016/j.asej.2021.01.017.
  • Tanveer, A.; Malik, M. Y. Slip and Porosity Effects on Peristalsis of MHD Ree-Eyring Nanofluid in Curved Geometry. Ain Shams Eng. J. 2021, 12, 955–968. DOI: 10.1016/j.asej.2020.04.008.
  • Awais, M.; Awan, S. E.; Raja, M. A. Z.; Parveen, N.; Khan, W. U.; Malik, M. Y.; He, Y. Effects of Variable Transport Properties on Heat and Mass Transfer in MHD Bioconvective Nanofluid Rheology with Gyrotactic Microorganisms: Numerical Approach. Coatings. 2021, 11, 231. DOI: 10.3390/coatings11020231.
  • Abbas, N.; Nadeem, S.; Saleem, A.; Malik, M. Y.; Issakhov, A.; Alharbi, F. M. Models Base Study of Inclined MHD of Hybrid Nanofluid Flow over Nonlinear Stretching Cylinder. Chin. J. Phys. 2021, 69, 109–117. DOI: 10.1016/j.cjph.2020.11.019.
  • Nadeem, S.; Abbas, N.; Malik, M. Y. Heat Transport in CNTs Based Nanomaterial Flow of Non-Newtonian Fluid Having Electro Magnetize Plate. Alex. Eng. J. 2020, 59, 3431–3442. DOI: 10.1016/j.aej.2020.05.022.
  • Choi, S. U.; Eastman, J. A. Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29); Argonne National Lab.: Lemont, IL, 1995.
  • Buongiorno, J.; Hu, L. W.; Kim, S. J.; Hannink, R.; Truong, B.; Forrest, E. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps. Nucl. Technol. 2008, 162, 80–91. DOI: 10.13182/NT08-A3934.
  • Wang, X. Q.; Mujumdar, A. S. A. Review on Nanofluids-Part I: Theoretical and Numerical Investigations. Braz. J. Chem. Eng. 2008, 25, 613–630. DOI: 10.1590/S0104-66322008000400001.
  • Khan, W. A.; Pop, I. Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • Bachok, N.; Ishak, A.; Pop, I. Unsteady Boundary-Layer Flow and Heat Transfer of a Nanofluid over a Permeable Stretching/Shrinking Sheet. Int. J. Heat Mass Transf. 2012, 55, 2102–2109. DOI: 10.1016/j.ijheatmasstransfer.2011.12.013.
  • Hayat, T.; Ullah, I.; Alsaedi, A.; Ahmad, B. Modeling Tangent Hyperbolic Nanoliquid Flow with Heat and Mass Flux Conditions. Eur. Phys. J. Plus. 2017, 132, 112. DOI: 10.1140/epjp/i2017-11369-0.
  • Rehman, K. U.; Alshomrani, A. S.; Malik, M. Y.; Zehra, I.; Naseer, M. Thermo-Physical Aspects in Tangent Hyperbolic Fluid Flow Regime: A Short Communication. Case Stud. Therm. Eng. 2018, 12, 203–212. DOI: 10.1016/j.csite.2018.04.014.
  • Hayat, T.; Muhammad, T.; Mustafa, M.; Alsaedi, A. An Optimal Study for Three-Dimensional Flow of Maxwell Nanofluid Subject to Rotating Frame. J. Mol. Liq. 2017, 229, 541–547. DOI: 10.1016/j.molliq.2017.01.005.
  • Atif, S. M.; Hussain, S.; Sagheer, M. Heat and Mass Transfer Analysis of Time-Dependent Tangent Hyperbolic Nanofluid Flow Past a Wedge. Phys. Lett. A. 2019, 383, 1187–1198. DOI: 10.1016/j.physleta.2019.01.003.
  • Shafiq, A.; Sindhu, T. N.; Khalique, C. M. Numerical Investigation and Sensitivity Analysis on Bioconvective Tangent Hyperbolic Nanofluid Flow towards Stretching Surface by Response Surface Methodology. Alex. Eng. J. 2020, 59, 4533–4548. DOI: 10.1016/j.aej.2020.08.007.
  • Khan, M.; Hussain, A.; Malik, M. Y.; Salahuddin, T.; Khan, F. Boundary Layer Flow of MHD Tangent Hyperbolic Nanofluid over a Stretching Sheet: A Numerical Investigation. Results Phys. 2017, 7, 2837–2844. DOI: 10.1016/j.rinp.2017.07.061.
  • Hayat, T.; Waqas, M.; Alsaedi, A.; Bashir, G.; Alzahrani, F. Magnetohydrodynamic (MHD) Stretched Flow of Tangent Hyperbolic Nanoliquid with Variable Thickness. J. Mol. Liq. 2017, 229, 178–184. DOI: 10.1016/j.molliq.2016.12.058.
  • Hayat, T.; Mumtaz, M.; Shafiq, A.; Alsaedi, A. Stratified Magnetohydrodynamic Flow of Tangent Hyperbolic Nanofluid Induced by Inclined Sheet. Appl. Math. Mech. - Engl. Ed. 2017, 38, 271–288. DOI: 10.1007/s10483-017-2168-9.
  • Hayat, T.; Aslam, N.; Alsaedi, A.; Rafiq, M. Endoscopic Effect in MHD Peristaltic Activity of Hyperbolic Tangent Nanofluid: A Numerical Study. Int. J. Heat Mass Transf. 2017, 115, 1033–1042. DOI: 10.1016/j.ijheatmasstransfer.2017.07.110.
  • Mahdy, A. MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid past a Vertical Permeable Cone. Int. J. Aerosp. Mech. Eng. 2019, 13, 592–597.
  • Oyelakin, I. S.; Lalramneihmawii, P. C.; Mondal, S.; Nandy, S. K.; Sibanda, P. Thermophysical Analysis of Three‐Dimensional Magnetohydrodynamic Flow of a Tangent Hyperbolic Nanofluid. Eng. Rep. 2020, 2, e12144. DOI: 10.1002/eng2.12144.
  • Thumma, T.; Wakif, A.; Animasaun, I. L. Generalized Differential Quadrature Analysis of Unsteady Three‐Dimensional MHD Radiating Dissipative Casson Fluid Conveying Tiny Particles. Heat Transf. 2020, 49, 2595–2626. DOI: 10.1002/htj.21736.
  • Zainal, N. A.; Nazar, R.; Naganthran, K.; Pop, I. Unsteady Three-Dimensional MHD Non-Axisymmetric Homann Stagnation Point Flow of a Hybrid Nanofluid with Stability Analysis. Mathematics. 2020, 8, 784. DOI: 10.3390/math8050784.
  • Kumar, G. V.; Varma, S. V. K.; Kumar, R. V. M. S. S. K. Unsteady Three-Dimensional MHD Nanofluid Flow over a Stretching Sheet with Variable Wall Thickness and Slip Effects. Int. J. Appl. Mech. Eng. 2019, 24, 709–724. DOI: 10.2478/ijame-2019-0044.
  • Javed, T.; Faisal, M.; Ahmad, I. Dynamisms of Solar Radiation and Prescribed Heat Sources on Bidirectional Flow of Magnetized Eyring-Powell Nanofluid. Case Stud. Therm. Eng. 2020, 21, 100689. DOI: 10.1016/j.csite.2020.100689.
  • Ahmad, I.; Faisal, M.; Javed, T. Magneto-Nanofluid Flow Due to Bidirectional Stretching Surface. Special Topics Rev. Porous Media. 2019, 10, 457–473. DOI: 10.1615/SpecialTopicsRevPorousMedia.2019029445.
  • Patil, P. M.; Pop, I.; Roy, S. Unsteady Heat and Mass Transfer over a Vertical Stretching Sheet in a Parallel Free Stream with Variable Wall Temperature and Concentration. Numer. Methods Partial Differ. Equ. 2012, 28, 926–941. DOI: 10.1002/num.20665.
  • Ahmad, I.; Faisal, M.; Javed, T. Bi-Directional Stretched Nanofluid Flow with Cattaneo-Christov Double Diffusion. Results Phys. 2019, 15, 102581. DOI: 10.1016/j.rinp.2019.102581.
  • Javed, T.; Faisal, M.; Ahmad, I. Actions of Viscous Dissipation and Ohmic Heating on Bidirectional Flow of a Magneto‐Prandtl Nanofluid with Prescribed Heat and Mass Fluxes. Heat Transf. 2020, 49, 4801–4819. DOI: 10.1002/htj.21853.
  • Faisal, M.; Ahmad, I.; Javed, T. Radiative Nanofluid Flow Due to Unsteady Bi-Directional Stretching Surface with Convective and Zero Mass Flux Boundary Conditions: Using Keller Box Scheme. Comput. Therm. Sci. 2020, 12, 361–385. DOI: 10.1615/ComputThermalScien.2020033674.
  • Upadhay, M. S.; Raju, C. S. K. Cattaneo-Christov on Heat and Mass Transfer of Unsteady Eyring Powell Dusty Nanofluid over Sheet with Heat and Mass Flux Conditions. Inform. Med. Unlocked. 2017, 9, 76–85. DOI: 10.1016/j.imu.2017.06.001.
  • Faisal, M.; Ahmad, I.; Javed, T. Significances of Prescribed Heat Sources on Magneto Casson Nanofluid Flow Due to Unsteady Bi-Directionally Stretchable Surface in a Porous Medium. SN Appl. Sci. 2020, 2, 1–15. DOI: 10.1007/s42452-020-03262-4.
  • Ahmad, I.; Faisal, M.; Javed, T. Radiation Aspects on Magneto‐Carreau Nanoliquid Flow over a Bidirectionally Stretchable Surface with Variable Thermal Conditions. Heat Transf. 2020, 49, 3456–3476. DOI: 10.1002/htj.21782.
  • Faisal, M.; Ahmad, I.; Javed, T. Numerical Simulation of Mixed Convective 3D Flow of a Chemically Reactive Nanofluid Subject to Convective Nield's Conditions with a Nonuniform Heat Source/Sink. Heat Transf. 2021, 50, 352–369. DOI: 10.1002/htj.21880.
  • Javed, T.; Faisal, M.; Ahmad, I. Dynamisms of Activation Energy and Convective Nield’s Conditions on Bidirectional Flow of Radiative Eyring–Powell Nanofluid. Int. J. Mod. Phys. C. 2020, 31, 2050156. DOI: 10.1142/S0129183120501569.
  • Shafiq, A.; Hammouch, Z.; Sindhu, T. N. Bioconvective MHD Flow of Tangent Hyperbolic Nanofluid with Newtonian Heating. Int. J. Mech. Sci. 2017, 133, 759–766. DOI: 10.1016/j.ijmecsci.2017.07.048.
  • Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T. Doubly Stratified MHD Tangent Hyperbolic Nanofluid Flow Due to Permeable Stretched Cylinder. Results Phys. 2018, 9, 23–32. DOI: 10.1016/j.rinp.2018.02.019.
  • Shahzad, F.; Sagheer, M.; Hussain, S. MHD Tangent Hyperbolic Nanofluid with Chemical Reaction, Viscous Dissipation and Joule Heating Effects. AIP Adv. 2019, 9, 025007. DOI: 10.1063/1.5054798.
  • Atif, S. M.; Hussain, S.; Sagheer, M. Effect of Viscous Dissipation and Joule Heating on MHD Radiative Tangent Hyperbolic Nanofluid with Convective and Slip Conditions. J Braz. Soc. Mech. Sci. Eng. 2019, 41, 1–17. DOI: 10.1007/s40430-019-1688-9.
  • Salahuddin, T.; Malik, M. Y.; Hussain, A.; Awais, M.; Khan, I.; Khan, M. Analysis of Tangent Hyperbolic Nanofluid Impinging on a Stretching Cylinder near the Stagnation Point. Results Phys. 2017, 7, 426–434. DOI: 10.1016/j.rinp.2016.12.033.
  • Chen, G.; Liu, L.; Du, J.; Silberschmidt, V. V.; Chan, Y. C.; Liu, C.; Wu, F. Thermo-Migration Behavior of SAC305 Lead-Free Solder Reinforced with Fullerene Nanoparticles. J. Mater. Sci. 2016, 51, 10077–10091. DOI: 10.1007/s10853-016-0234-8.
  • Wakif, A.; Animasaun, I. L.; Satya Narayana, P. V.; Sarojamma, G. Meta-Analysis on Thermo-Migration of Tiny/Nano-Sized Particles in the Motion of Various Fluids. Chin. J. Phys. 2020, 68, 293–307. DOI: 10.1016/j.cjph.2019.12.002.
  • Chen, G.; Cui, X.; Wu, Y.; Li, W.; Wu, F. Microstructural, Compositional and Hardness Evolutions of 96.5 Sn–3Ag–0.5 Cu/TiC Composite Solder under Thermo-Migration Stressing. J. Mater. Sci. Mater. Electron. 2020, 31, 9492–9503.
  • Zaydan, M.; Wakif, A.; Animasaun, I. L.; Khan, U.; Baleanu, D.; Sehaqui, R. Significances of Blowing and Suction Processes on the Occurrence of Thermo-Magneto-Convection Phenomenon in a Narrow Nanofluidic Medium: A Revised Buongiorno's Nanofluid Model. Case Stud. Therm. Eng. 2020, 22, 100726. DOI: 10.1016/j.csite.2020.100726.
  • Wakif, A.; Chamkha, A.; Thumma, T.; Animasaun, I. L.; Sehaqui, R. Thermal Radiation and Surface Roughness Effects on the Thermo-Magneto-Hydrodynamic Stability of Alumina–Copper Oxide Hybrid Nanofluids Utilizing the Generalized Buongiorno’s Nanofluid Model. J. Therm. Anal. Calorim. 2021, 143, 1201–1220. DOI: 10.1007/s10973-020-09488-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.