142
Views
4
CrossRef citations to date
0
Altmetric
Articles

Unsteady three dimensional radiative-convective flow and heat transfer of dusty nanofluid within porous cubic enclosures

&
Pages 189-203 | Received 17 Feb 2021, Accepted 04 May 2021, Published online: 14 Jun 2021

References

  • Pop, I.; Ingham, D. B. Convective Heat Transfer, Mathematical and Computational Modeling of Viscous Fluids and Porous Media; Pergamon: Oxford, 2001.
  • Bejan, A.; Kraus, A. D., Eds. Heat Transfer Handbook; Wiley: New York, 2003.
  • Alves, T. A.; Altemani, C. A. C. An Invariant Descriptor for Heaters Temperature Prediction in Conjugate Cooling. Int. J. Therm. Sci. 2012, 58, 92–101. DOI: 10.1016/j.ijthermalsci.2012.03.007.
  • Kuznetsov, G. V.; Sheremet, M. A. New Approach to the Mathematical Modeling of Thermal Regimes for Electronic Equipment. Russ. Microelectron. 2008, 37, 131–138. DOI: 10.1134/S1063739708020078.
  • Al-Sanea, S. A.; Zedan, M. F.; Al-Harbi, M. B. Heat Transfer Characteristics in Airconditioned Rooms Using Mixing Air-Distribution System under Mixed Convection Conditions. Int. J. Therm. Sci. 2012, 59, 247–259. DOI: 10.1016/j.ijthermalsci.2012.04.023.
  • Ben Mansour, R.; Nguyen, C. T.; Galanis, N. Numerical Study of Transient Heat and Mass Transfer and Stability in a Salt-Gradient Solar Pond. Int. J. Therm. Sci. 2004, 43, 779–790. DOI: 10.1016/j.ijthermalsci.2004.02.018.
  • Choi, S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Developments and Applications of Nonnewtonian Flows; Singer, D. A.; Wang, H. P., Eds.; American Society of Mechanical Engineers: New York, NY, 1995; pp 99–105.
  • Buongiorno, J. Convective Transport in Nanofluids. ASME J. Heat Transf. 2006, 128, 240–250. DOI: 10.1115/1.2150834.
  • Ozerinc, S.; Kakac, S.; Yazicioglu, A. G. Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review. Microfluid Nanofluid 2010, 8, 145–170.
  • Chandrasekar, M.; Suresh S, S. A Review on the Mechanisms of Heat Transport in Nanofluids. Heat Transf. 2009, 30, 1136–1150. DOI: 10.1080/01457630902972744.
  • Li, Y. J.; Zhou, J. E.; Tung, S.; Schneider, E.; Xi, S. A Review on Development of Nanofluid Preparation and Characterization. Powder 2009, 196, 89–101. DOI: 10.1016/j.powtec.2009.07.025.
  • Ghasemi, B.; Aminossadati, S. M.; Raisi, A. Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure. Int. J. Therm. Sci. 2011, 50, 1748–1756. DOI: 10.1016/j.ijthermalsci.2011.04.010.
  • Garoosi, F.; Bagheri, G. H.; Talebi, F. Numerical Simulation of Natural Convection of Nanofluids in a Square Cavity with Several Pairs of Heaters and Coolers (HACs) inside. Int. J. Heat Mass. Transf. 2013, 67, 362–376. DOI: 10.1016/j.ijheatmasstransfer.2013.08.034.
  • Ahmed, S. E.; Rashad, A. M.; Gorla, R. Natural Convection in Triangular Enclosures Filled with Nanofluid Saturated Porous Media. J. Thermophys. Heat Transfer 2013, 27, 700–706. DOI: 10.2514/1.T4029.
  • Hossain, M. S.; Abdul Alim, M. MHD Free Convection within Trapezoidal Cavity with Non-Uniformly Heated Bottom Wall. Int. J. Heat Mass Transf. 2014, 69, 327–336. DOI: 10.1016/j.ijheatmasstransfer.2013.10.035.
  • Khan, Z. H.; Makinde, O. D.; Hamid, M.; Haq, R. U.; Khan, W. A. Hydromagnetic Flow of Ferrofluid in an Enclosed Partially Heated Trapezoidal Cavity Filled with a Porous Medium. J. Magn. Magn. Mater. 2020, 499, 166241. DOI: 10.1016/j.jmmm.2019.166241.
  • Pushpa, B. V.; Sankar, M.; Makinde, O. D. Optimization of Thermosolutal Convection in Vertical Porous Annulus with a Circular Baffle. Therm. Sci. Eng. Prog. 2020, 20, 100735. DOI: 10.1016/j.tsep.2020.100735.
  • Ahmed, S. E.; Rashed, Z. Z. MHD Natural Convection in a Heat Generating Porous Medium-Filled Wavy Enclosures Using Buongiorno's Nanofluid Model. Case Stud. Therm. Eng. 2019, 14, 100430. DOI: 10.1016/j.csite.2019.100430.
  • Rashed, Z. Z.; Ahmed, S. E.; Raizah, Z. A. S. Thermal Dispersion Effect on Natural Convection in Inclined Rectangular Enclosures Filled with Multi-Layers of a Heat Generating Porous Medium and Nanofluid Using Buongiorno's. J. Porous Media 2020, 23(4), 341–361. DOI: 10.1615/JPorMedia.2020026476.
  • Sajjadi, H.; Delouei, A. A.; Atashafrooz, M.; Sheikholeslami, M. Double MRT Lattice Boltzmann Simulation of 3-D MHD Natural Convection in a Cubic Cavity with Sinusoidal Temperature Distribution Utilizing Nanofluid. Int. J. Heat Mass Transf. 2018, 126, 489–503. DOI: 10.1016/j.ijheatmasstransfer.2018.05.064.
  • Jelodari, I.; Nikseresht, H. A. Effects of Lorentz Force and Induced Electrical Field on the Thermal Performance of a Magnetic Nanofluid-Filled Cubic Cavity. J. Mol. Liq. 2018, 252, 296–310. DOI: 10.1016/j.molliq.2017.12.143.
  • Wang, L.; Shi, B.; Chai, Z. Effects of Temperature-Dependent Properties on Natural Convection of Nanofluids in a Partially Heated Cubic Enclosure. Appl. Therm. Eng. 2018, 128, 204–213. DOI: 10.1016/j.applthermaleng.2017.09.006.
  • Sheikholeslami, M.; Shehzad, S. A.; Abbasi, F. M.; Li, Z. Zhixiong Lid Nanofluid Flow and Forced Convection Heat Transfer Due to Lorentz Forces in a Porous Lid Driven Cubic Enclosure with Hot Obstacle. Comput. Methods Appl. Mech. Eng. 2018, 338, 491–505. DOI: 10.1016/j.cma.2018.04.020.
  • Alsabery, A. I.; Ismael, M. A.; Chamkha, A. J.; Hashim, I.; Abulkhair, H. Unsteady Flow and Entropy Analysis of Nanofluids inside Cubic Porous Container Holding Inserted Body and Wavy Bottom Wall. Int. J. Mech. Sci. 2021, 193, 106161. DOI: 10.1016/j.ijmecsci.2020.106161.
  • Sheremet, M. A.; Pop, I. Marangoni Natural Convection in a Cubical Cavity Filled with a Nanofluid Buongiorno’s Nanofluid Model. J. Therm. Anal. Calorim. 2019, 135, 357–369. DOI: 10.1007/s10973-018-7069-2.
  • Sheikholeslami, M.; Shehzad, S. A.; Li, Z. Water Based Nanofluid Free Convection Heat Transfer in a Three Dimensional Porous Cavity with Hot Sphere Obstacle in Existence of Lorenz Forces. Int. J. Heat Mass Transf. 2018, 125, 375–386. DOI: 10.1016/j.ijheatmasstransfer.2018.04.076.
  • Sandeep, N.; Jagadeesh Kumar, M. S. Heat and Mass Transfer in Nanofluid Flow over an Inclined Stretching Sheet with Volume Fraction of Dust and Nanoparticles. JAFM. 2016, 9, 2205–2215. DOI: 10.18869/acadpub.jafm.68.236.25282.
  • Begum, N.; Siddiqa, S.; Sulaiman, M.; Islam, S.; Hossain, M. A.; Gorla, R. S. R. Numerical Solutions for Gyrotactic Bioconvection of Dusty Nanofluid along a Vertical Isothermal Surface. Int. J. Heat Mass Transf. 2017, 113, 229–236. DOI: 10.1016/j.ijheatmasstransfer.2017.05.071.
  • Siddiqa, S.; Begum, N.; Hossain, M. A.; Gorla, R. S. R.; Al-Rashed, A. A. Two-Phase Natural Convection Dusty Nanofluid Flow. Int. J. Heat Mass Transf. 2018, 118, 66–74. DOI: 10.1016/j.ijheatmasstransfer.2017.10.067.
  • Gireesha, B. J.; Mahanthesh, B.; Thammanna, G. T.; Sampathkumar, P. B. Hall Effects on Dusty Nanofluid Two-Phase Transient Flow past a Stretching Sheet Using KVL Model. J. Mol. Liq. 2018, 256, 139–147. DOI: 10.1016/j.molliq.2018.01.186.
  • Mishra, S. R.; Khan, M. I.; Rout, B. C. Dynamics of Dust Particles in a Conducting Dusty Nanomaterials: A Computational Approach. Int. Commun. Heat Mass Transfer 2020, 119, 104967. DOI: 10.1016/j.icheatmasstransfer.2020.104967.
  • Rashid, M.; Hayat, T.; Alsaedi, A.; Ahmed, B. Flow of Fe3O4 Nanofluid with Dust and Nanoparticles. Appl. Nanosci. 2020, 10, 3115–3122. DOI: 10.1007/s13204-019-01061-x.
  • Rashed, Z. Z.; Ahmed, S. E. Peristaltic Flow of Dusty Nanofluids in Curved Channels. Comput. Mater. Continua 2021, 66(1), 1012–1026. DOI: 10.32604/cmc.2020.012468.
  • Abo-Elkhair, R. E.; Bhatti, M. M.; Mekheimer, K. S. Magnetic Force Effects on Peristaltic Transport of Hybrid Bio-Nanofluid (AuCu Nanoparticles) with Moderate Reynolds Number: An Expanding Horizon. Int. Commun. Heat Mass Transfer 2021, 123, 105228. DOI: 10.1016/j.icheatmasstransfer.2021.105228.
  • Arain, M. B.; Bhatti, M. M.; Zeeshan, A.; Saeed, T.; Hobiny, A. Analysis of Arrhenius Kinetics on Multiphase Flow between a Pair of Rotating Circular Plates. Math. Prob. Eng. 2020, 2020, Article ID 2749105, 17 pages, DOI: 10.1155/2020/2749105
  • Shahid, A.; Huang, H. L.; Khalique, C. M.; Bhatti, M. M. Numerical Analysis of Activation Energy on MHD Nanofluid Flow with Exponential Temperature-Dependent Viscosity past a Porous Plate. J. Therm. Anal. Calorim. 2021, 143, 2585–2596. DOI: 10.1007/s10973-020-10295-9.
  • Zhang, L.; Bhatti, M. M.; Marin, M.; Mekheimer, K. S. Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles. Entropy  2020, 22(10), 1070. DOI: 10.3390/e22101070.
  • Waqas, H.; Khan, S. U.; Bhatti, M. M.; Imran, M. Significance of Bioconvection in Chemical Reactive Flow of Magnetized Carreau–Yasuda Nanofluid with Thermal Radiation and Second-Order Slip. J. Therm. Anal. Calorim. 2020, 140, 1293–1306. DOI: 10.1007/s10973-020-09462-9.
  • Sulochana, C.; Sandeep, N. Flow and Heat Transfer Behavior of MHD Dusty Nanofluid Past a Porous Stretching/Shrinking Cylinder at Different Temperatures. JAFM. 2016, 9, 543–553. DOI: 10.18869/acadpub.jafm.68.225.24847.
  • Naramgari, S.; Sulochana, C. MHD Flow of Dusty Nanofluid over a Stretching Surface with Volume Fraction of Dust Particles. Ain Shams Eng. J. 2016, 7, 709–716. DOI: 10.1016/j.asej.2015.05.015.
  • Sandeep, N.; Sulochana, C.; Kumar, B. R. Unsteady MHD Radiative Flow and Heat Transfer of a Dusty Nanofluid over an Exponentially Stretching Surface. Eng. Sci. Technol. Int. J. 2016, 19, 227–240. DOI: 10.1016/j.jestch.2015.06.004.
  • Rashad, A. M.; Sivasankaran, S.; Mansour, M. A.; Bhuvaneswari, M. Magneto-Convection of Nanofluids in a Lid-Driven Trapezoidal Cavity with Internal Heat Generation and Discrete Heating. Numer. Heat Transf. Part A: Appl. 2017, 71, 1223–1234. DOI: 10.1080/10407782.2017.1347000.
  • Sivasankaran, S.; Mansour, M. A.; Rashad, A. M.; Bhuvaneswari, M. MHD Mixed Convection of Cu–Water Nanofluid in a Two-Sided Lid-Driven Porous Cavity with a Partial Slip. Numer. Heat Transf. Part A: Appl. 2016, 70, 1356–1370. DOI: 10.1080/10407782.2016.1243957.
  • Rashad, A. M.; Ismael, M. A.; Chamkha, A. J.; Mansour, M. A. MHD Mixed Convection of Localized Heat Source/Sink in a Nanofluid-Filled Lid-Driven Square Cavity with Partial Slip. J. Taiwan Inst. Chem. Eng. 2016, 68, 173–186. DOI: 10.1016/j.jtice.2016.08.033.
  • Yadav, D.; Nam, D.; Lee, J. The Onset of Transient Soret-Driven MHD Convection Confined within a Hele-Shaw Cell with Nanoparticles Suspension. J. Taiwan Inst. Chem. Eng. 2016, 58, 235–244. DOI: 10.1016/j.jtice.2015.07.008.
  • Yadav, D.; Lee, J. The Onset of MHD Nanofluid Convection with Hall Current Effect. Eur. Phys. J. Plus 2015, 130, 162. DOI: 10.1140/epjp/i2015-15162-9.
  • Yadav, D.; Bhargava, R.; Agrawal, G. S. Thermal Instability in a Nanofluid Layer with a Vertical Magnetic Field. J. Eng. Math. 2013, 80, 147–164. DOI: 10.1007/s10665-012-9598-1.
  • Yadav, D.; Kim, C.; Lee, J.; Cho, H. H. Influence of Magnetic Field on the Onset of Nanofluid Convection Induced by Purely Internal Heating. Comput. Fluids 2015, 121, 26–36. DOI: 10.1016/j.compfluid.2015.07.024.
  • Yadav, D.; Wakif, A.; Boulahia, Z.; Sehaqui, R. Numerical Examination of the Thermo-Electro-Hydrodynamic Convection in a Horizontal Dielectric Nanofluid Layer Using the Power Series Method. J. Nanofluids 2019, 8, 117–131. DOI: 10.1166/jon.2019.1558.
  • Yadav, D.; Chu, Y.-M.; Li, Z. Examination of the Nanofluid Convective Instability of Vertical Constant Throughflow in a Porous Medium Layer with Variable Gravity. Appl. Nanosci. DOI: 10.1007/s13204-021-01700-2(2021).
  • Sheikholeslami, M. Magnetic Field Influence on Nanofluid Thermal Radiation in a Cavity with Tilted Elliptic Inner Cylinder. J. Mol. Liq. 2017, 229, 137–147. DOI: 10.1016/j.molliq.2016.12.024.
  • Patankar, S. V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: Washington, 1980.
  • Ahmed, S. E. Mixed Convection in Thermally Anisotropic non-Darcy Porous Medium in Double Lid-Driven Cavity Using Bejan’s Heatlines. Alexandria Eng. J. 2016, 55, 299–309. DOI: 10.1016/j.aej.2015.07.016.
  • Kim, B. S.; Lee, D. S.; Ha, M. Y.; Yoon, H. S. A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations. Int. J. Heat Mass Transf. 2008, 51, 1888–1906. DOI: 10.1016/j.ijheatmasstransfer.2007.06.033.
  • Zhu, Q. Y.; Zhuang, Y. J.; Yu, H. Z. Entropy Generation Due to Three-Dimensional Double-Diffusive Convection of Power-Law Fluids in Heterogeneous Porous Media. Int. J. Heat Mass Transf. 2017, 106, 61–82. DOI: 10.1016/j.ijheatmasstransfer.2016.10.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.