320
Views
33
CrossRef citations to date
0
Altmetric
Articles

Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon

ORCID Icon, , , &
Pages 225-235 | Received 21 Feb 2021, Accepted 05 Jun 2021, Published online: 01 Jul 2021

References

  • Choi, S. U. S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME Publ. Fed 1995, 231, 99–106.
  • Buongiorno, J. Convective Transport in Nanofluids. J. Heat Transfer 2010, 128, 240–250.
  • Dawar, A.; Shah, Z.; Khan, W.; Idrees, M.; Islam, S. Unsteady Squeezing Flow of Magnetohydrodynamic Carbon Nanotube Nanofluid in Rotating Channels with Entropy Generation and Viscous Dissipation. Adv. Mech. Eng. 2019, 11, 1–18. DOI: 10.1177/1687814018823100.
  • Siddiqui, A. A.; Turkyilmazoglu, M. A New Theoretical Approach of Wall Transpiration in the Cavity Flow of the Ferrofluids. Micromachines 2019, 10, 373. DOI: 10.3390/mi10060373.
  • Nadeem, S.; Shahzadi, I. Single Wall Carbon Nanotube (SWCNT) Analysis on Peristaltic Flow in an Inclined Tube with Permeable Walls. Int. J. Heat Mass Transf. 2016, 97, 794–802. DOI: 10.1016/j.ijheatmasstransfer.2016.02.060.
  • Khan, M. I.; Hayat, T.; Khan, M. I.; Alsaedi, A. Activation Energy Impact in Nonlinear Radiative Stagnation Point Flow of Cross Nanofluid. Int. Commun. Heat Mass Transf. 2018, 91, 216–224. DOI: 10.1016/j.icheatmasstransfer.2017.11.001.
  • Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Shehzad, S. A. Marangoni Convective MHD Flow of SWCNT and MWCNT Nanoliquids Due to a Disk with Solar Radiation and Irregular Heat Source. Phys. E 2017, 94, 25–30. DOI: 10.1016/j.physe.2017.07.011.
  • Mahanthesh, B.; Amala, S. A.; Gireesha, B. J.; Animasaun, I. L. Effectiveness of Exponential Heat Source, Nanoparticle Shape Factor and Hall Current on Mixed Convective Flow of Nanoliquids Subject to Rotating Frame. Multidiscip. Model. Mater. Struct. 2019, 15, 758–778. DOI: 10.1108/MMMS-08-2018-0146.
  • Sohail, M.; Raza, R. Analysis of Radiative Magneto Nano Pseudo-Plastic Material over Three Dimensional Nonlinear Stretched Surface with Passive Control of Mass Flux and Chemically Responsive Species. Multidiscip. Model. Mater. Struct. 2020, 16, 1061–1083. DOI: 10.1108/MMMS-08-2019-0157.
  • Eid, M. R.; Mabood, F. Entropy Analysis of a Hydromagnetic Micropolar Dusty Carbon NTs-Kerosene Nanofluid with Heat Generation: Darcy–Forchheimer Scheme. J. Therm. Anal. Calorim. 2021, 143, 2419–2436. DOI: 10.1007/s10973-020-09928-w..
  • Wakif, A.; Chamkha, A.; Thumma, T.; Animasaun, I. L.; Sehaqui, R. Thermal Radiation and Surface Roughness Effects on the Thermo-Magneto-Hydrodynamic Stability of Alumina–Copper Oxide Hybrid Nanofluids Utilizing the Generalized Buongiorno’s Nanofluid Model. J. Therm. Anal. Calorim. 2021, 143, 1201–1220. DOI: 10.1007/s10973-020-09488-z.
  • Turkyilmazoglu, M. Single Phase Nanofluids in Fluid Mechanics and Their Hydrodynamic Linear Stability Analysis. Comput. Methods Programs Biomed. 2020, 187, 105171. DOI: 10.1016/j.cmpb.2019.105171.
  • Waqas, H.; Imran, M.; Khan, S. U.; Shehzad, S. A.; Meraj, M. A. Slip Flow of Maxwell Viscoelasticity-Based Micropolar Nano Particles with Porous Medium: A Numerical Study. Appl. Math. Mech. (Engl. Ed.) 2019, 40, 1255–1268. DOI: 10.1007/s10483-019-2518-9.
  • Khan, S. U.; Al-Khaled, K.; Bhatti, M. M. Bioconvection Analysis for Flow of Oldroyd-B Nanofluid Configured by a Convectively Heated Surface with Partial Slip Effects. Surf. Interfaces 2021, 23, 100982. DOI: 10.1016/j.surfin.2021.100982.
  • Khan, S. U.; Tlili, I.; Waqas, H.; et al. Effects of Nonlinear Thermal Radiation and Activation Energy on Modified Second-Grade Nanofluid with Cattaneo–Christov Expressions. J. Therm. Anal. Calorim. 2021, 143, 1175–1186. DOI: 10.1007/s10973-020-09392-6
  • Ashraf, M. U.; Qasim, M.; Wakif, A.; Afridi, M. I.; Animasaun, I. L. A Generalized Differential Quadrature Algorithm for Simulating Magnetohydrodynamic Peristaltic Flow of Blood‐Based Nanofluid Containing Magnetite Nanoparticles: A Physiological Application. Numer. Methods Partial Differ. Equ. 2020. DOI: 10.1002/num.22676.
  • Shehzad, S. A.; Khan, S. U.; Abbas, Z.; Rauf, A. A Revised Cattaneo-Christov Micropolar Viscoelastic Nanofluid Model with Combined Porosity and Magnetic Effects. Appl. Math. Mech. (Engl. Ed.) 2020, 41, 521–532. DOI: 10.1007/s10483-020-2581-5.
  • Ali, R.; Akgül, A.; Asjad, M. I. Power Law Memory of Natural Convection Flow of Hybrid Nanofluids with Constant Proportional Caputo Fractional Derivative Due to Pressure Gradient. Pramana J. Phys. 2020, 94, 131. DOI: 10.1007/s12043-020-01997-8.
  • Khan, N. S.; Shah, Z.; Shutaywi, M.; Kumam, P.; Thounthong, P. Second Law Analysis with Effects of Arrhenius Activation Energy and Binary Chemical Reaction on Nanofluid Flow. Sci. Rep. 2020, 10, 1–16. DOI: 10.1038/s41598-020-76587-0.
  • Khan, M. I.; Alzahrani, F. Nonlinear Dissipative Slip Flow of Jeffrey Nanomaterial towards a Curved Surface with Entropy Generation and Activation Energy. Math. Comput. Simul. 2021, 185, 47–61. DOI: 10.1016/j.matcom.2020.12.004.
  • Khan, M. I. Transportation of Hybrid Nanoparticles in Forced Convective Darcy–Forchheimer Flow by a Rotating Disk. Int. Commun. Heat Mass Transfer 2021, 122, 105177. DOI: 10.1016/j.icheatmasstransfer.2021.105177.
  • Nayak, M. K.; Abdul Hakeem, A. K.; Ganga, B.; Khan, M. I.; Waqas, M.; Makinde, O. D. Entropy Optimized MHD 3D Nanomaterial of non-Newtonian Fluid: A Combined Approach to Good Absorber of Solar Energy and Intensification of Heat Transport. Comput. Methods Programs Biomed. 2020, 186, 105131. DOI: 10.1016/j.cmpb.2019.105131.
  • Khan, M. I.; Alzahrani, F. Free Convection and Radiation Effects in Nanofluid (Silicon Dioxide and Molybdenum Disulfide) with Second Order Velocity Slip, Entropy Generation, Darcy–Forchheimer Porous Medium. Int. J. Hydrogen Energy 2021, 46, 1362–1369. DOI: 10.1016/j.ijhydene.2020.09.240.
  • Ibrahim, M.; Khan, M. I. Mathematical Modeling and Analysis of SWCNT-Water and MWCNT-Water Flow over a Stretchable Sheet. Comput. Methods Programs Biomed. 2020, 187, 105222. DOI: 10.1016/j.cmpb.2019.105222.
  • Khan, M. I.; Alzahrani, F. Dynamics of Activation Energy and Nonlinear Mixed Convection in Darcy–Forchheimer Radiated Flow of Carreau Nanofluid near Stagnation Point Region. J. Therm. Sci. Eng. Appl. 2021, 13, 051009.
  • Shafiq, A.; Khan, I.; Rasool, G.; Sherif, E.-S. M.; Sheikh, A. H. Influence of Single- and Multi-Wall Carbon Nanotubes on Magnetohydrodynamic Stagnation Point Nanofluid Flow over Variable Thicker Surface with Concave and Convex Effects. Mathematics 2020, 8, 104. DOI: 10.3390/math8010104.
  • Shafiq, A.; Mebarek-Oudina, F.; Sindhu, T. N.; Abidi, A. A Study of Dual Stratification on Stagnation Point Walters' B Nanofluid Flow via Radiative Riga Plate: A Statistical Approach. Eur. Phys. J. Plus 2021, 136, 407. DOI: 10.1140/epjp/s13360-021-01394-z.
  • Rasool, G.; Shafiq, A. Numerical Exploration of the Features of Thermally Enhanced Chemically Reactive Radiative Powell–Eyring Nanofluid Flow via Darcy Medium over Non-Linearly Stretching Surface Affected by a Transverse Magnetic Field and Convective Boundary Conditions. Appl. Nanosci. 2020. DOI: 10.1007/s13204-020-01625-2.
  • Shafiq, A.; Sindhu, T. N.; Khalique, C. M. Numerical Investigation and Sensitivity Analysis on Bioconvective Tangent Hyperbolic Nanofluid Flow towards Stretching Surface by Response Surface Methodology. Alex. Eng. J. 2020, 59, 4533–4548. DOI: 10.1016/j.aej.2020.08.007.
  • Kuznetsov, A. V. The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms. Int. Commun. Heat Mass Transf. 2010, 37, 1421–1425. DOI: 10.1016/j.icheatmasstransfer.2010.08.015.
  • Kuznetsov, A. V. Nanofluid Bioconvection in Water-Based Suspensions Containing Nanoparticles and Oxytactic Microorganisms: Oscillatory Instability. Nanoscale Res. Lett. 2011, 6, 100. DOI: 10.1186/1556-276X-6-100.
  • Uddin, M. J.; Kabir, M. N.; Bég, O. A. Computational Investigation of Stefan Blowing and Multiple-Slip Effects on Buoyancy-Driven Bioconvection Nanofluid Flow with Microorganisms. Int. J. Heat Mass Transf. 2016, 95, 116–130. DOI: 10.1016/j.ijheatmasstransfer.2015.11.015.
  • Zaka Ullah, M.; Jang, T. S. An Efficient Numerical Scheme for Analyzing Bioconvection in von-Kármán Flow of Third-Grade Nanofluid with Motile Microorganisms. Alex. Eng. J. 2020, 59, 2739–2752. DOI: 10.1016/j.aej.2020.05.017.
  • Alwatban, A. M.; Khan, S. U.; Waqas, H.; Tlili, I. Interaction of Wu’s Slip Features in Bioconvection of Eyring Powell Nanoparticles with Activation Energy. Processes 2019, 7, 859.
  • Animasaun, I. L.; Makinde, O. D.; Saleem, S. Mixed Convection Flow of Newtonian Fluids over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution. J Braz. Soc. Mech. Sci. Eng. 2019, 41, 197. DOI: 10.1007/s40430-019-1698-7.
  • Ramesh, K.; Khan, S. U.; Jameel, M.; Khan, M. I.; Chu, Y.-M.; Kadry, S. Bioconvection Assessment in Maxwell Nanofluid Configured by a Riga Surface with Nonlinear Thermal Radiation and Activation Energy. Surf. Interfaces 2020, 21, 100749. DOI: 10.1016/j.surfin.2020.100749.
  • Chu, Y.-M.; Aziz, S.; Khan, M. I.; Khan, S. U.; Nazeer, M.; Ahmad, I.; Tlili, I. Nonlinear Radiative Bioconvection Flow of Maxwell Nanofluid Configured by Bidirectional Oscillatory Moving Surface with Heat Generation Phenomenon. Phys. Scr. 2020, 95, 105007. DOI: 10.1088/1402-4896/abb7a9.
  • Alshomrani, A. S.; Zaka Ullah, M.; Baleanu, D. Importance of Multiple Slips on Bioconvection Flow of Cross Nanofluid past a Wedge with Gyrotactic Motile Microorganisms. Case Stud. Therm. Eng. 2020, 22, 100798. DOI: 10.1016/j.csite.2020.100798.
  • Ali, B.; Hussain, S.; Nie, Y.; Ali, L.; Ul Hassan, S. Finite Element Simulation of Bioconvection and cattaneo-Christov Effects on Micropolar Based Nanofluid Flow over a Vertically Stretching Sheet. Chin. J. Phys. 2020, 68, 654–670. DOI: 10.1016/j.cjph.2020.10.021.
  • Nadeem, S.; Alblawi, A.; Muhammad, N.; Alarifi, I. M.; Issakhov, A.; Mustafa, M. T. A Computational Model for Suspensions of Motile Micro-Organisms in the Flow of Ferrofluid. J. Mol. Liq. 2020, 298, 112033. DOI: 10.1016/j.molliq.2019.112033.
  • M. F. M.; Basir, M. E. H.; Hafidzuddin, K.; Naganthran, Hashim, S. S.; Chaharborj, M. S. M.; Kasihmuddin, R. Nazar, Stability Analysis of Unsteady Stagnation-Point Gyrotactic Bioconvection Flow and Heat Transfer towards the Moving Sheet in a Nanofluid. Chin. J. Phys. 2020, 65, 538–553. DOI: 10.1016/j.cjph.2020.02.021.
  • Rashad, A. M.; Nabwey, H. A. Gyrotactic Mixed Bioconvection Flow of a Nanofluid past a Circular Cylinder with Convective Boundary Condition. J. Taiwan Inst. Chem. Eng. 2019, 99, 9–17. DOI: 10.1016/j.jtice.2019.02.035.
  • Usman, Khan, M. I.; Shah, F.; Khan, S. U.; Ghaffari, A.; Chu, Y.-M. Heat and Mass Transfer Analysis for Bioconvective Flow of Eyring Powell Nanofluid over a Riga Surface with Nonlinear Thermal Features. Numer. Methods Partial Differ. Equ. 2020, 1–17. DOI: 10.1002/num.22696..
  • Makinde, O. D.; Animasaun, I. L. Bioconvection in MHD Nanofluid Flow with Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction past an Upper Surface of a Paraboloid of Revolution. Int. J. Therm. Sci. 2016, 109, 159–171. DOI: 10.1016/j.ijthermalsci.2016.06.003.
  • Khan, W. A.; Makinde, O. D.; Khan, Z. H. MHD Boundary Layer Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Plate with Navier Slip. Int. J. Heat Mass Transf. 2014, 74, 285–291. DOI: 10.1016/j.ijheatmasstransfer.2014.03.026.
  • Avinash, K.; Sandeep, N.; Makinde, O. D.; Animasaun, I. L. Aligned Magnetic Field Effect on Radiative Bioconvection Flow past a Vertical Plate with Thermophoresis and Brownian Motion. Defect Diffus. Forum 2017, 377, 127–140. DOI: 10.4028/www.scientific.net/DDF.377.127.
  • Khan, W. A.; Makinde, O. D. MHD Nanofluid Bioconvection Due to Gyrotactic Microorganisms over a Convectively Heat Stretching Sheet. Int. J. Therm. Sci. 2014, 81, 118–124. DOI: 10.1016/j.ijthermalsci.2014.03.009.
  • Makinde, O. D.; Animasaun, I. L. Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction past an Upper Horizontal Surface of a Paraboloid of Revolution. J. Mol. Liq. 2016, 221, 733–743. DOI: 10.1016/j.molliq.2016.06.047.
  • Powell, R. E.; Eyring, H. Mechanisms for the Relaxation Theory of Viscosity. Nature 1944, 154, 427–428. DOI: 10.1038/154427a0.
  • Abegunrin, O. A.; Animasaun, I. L.; Sandeep, N. Insight into the Boundary Layer Flow of non-Newtonian Eyring-Powell Fluid Due to Catalytic Surface Reaction on an Upper Horizontal Surface of a Paraboloid of Revolution. Alex. Eng. J. 2018, 57, 2051–2060. DOI: 10.1016/j.aej.2017.05.018.
  • Khan, S. U.; Vaidya, H.; Chammam, W.; Musmar, S. A.; Prasad, K. V.; Tlili, I. Triple Diffusive Unsteady Flow of Eyring-Powell Nanofluid over a Periodically Accelerated Surface with Variable Thermal Features. Front. Phys. 2020, 8, 246. DOI: 10.3389/fphy.2020.00246.
  • Khan, S. U.; Waqas, H.; Muhammad, T.; Imran, M.; Aly, S. Simultaneous Effects of Bioconvection and Velocity Slip in Three-Dimensional Flow of Eyring-Powell Nanofluid with Arrhenius Activation Energy and Binary Chemical Reaction. Int. Commun. Heat Mass Transfer 2020, 117, 104738. DOI: 10.1016/j.icheatmasstransfer.2020.104738.
  • Shafiq, A.; Rasool, G.; Khalique, C. M. Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy–Forchheimer Nanofluid Flow. Symmetry 2020, 12, 741. DOI: 10.3390/sym12050741.
  • Rasool, G.; Shafiq, A.; Khan, I.; Baleanu, D.; Sooppy Nisar, K.; Shahzadi, G. Entropy Generation and Consequences of MHD in Darcy–Forchheimer Nanofluid Flow Bounded by Non-Linearly Stretching Surface. Symmetry 2020, 12, 652. DOI: 10.3390/sym12040652.
  • Andersson, H. I. Slip Flow past a Stretching Surface. Acta Mech. 2002, 158, 121–125. DOI: 10.1007/BF01463174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.