186
Views
6
CrossRef citations to date
0
Altmetric
Articles

Experimental and theoretical investigation of pyrazinecarboxamide against mild steel corrosion

, , &
Pages 329-341 | Received 26 Feb 2021, Accepted 12 Jun 2021, Published online: 20 Jul 2021

References

  • Finšgar, M.; Jackson, J. Application of Corrosion Inhibitors for Steels in Acidic Media for the Oil and Gas Industry: A Review. Corros. Sci. 2014, 86, 17–41. DOI: 10.1016/j.corsci.2014.04.044.
  • Abd El-Raouf, M.; Khamis, E. A.; Abou Kana, M. T. H.; Negm, N. A. Electrochemical and Quantum Chemical Evaluation of New Bis (Coumarins) Derivatives as Corrosion Inhibitors for Carbon Steel Corrosion in 0.5 M H2SO4. J. Mol. Liq. 2018, 255, 341–353. DOI: 10.1016/j.molliq.2018.01.148.
  • Murmu, M.; Kr. Saha, S.; Murmu, N. C.; Banerjee, P. Effect of Stereochemical Conformation into the Corrosion Inhibitive Behaviour of Double Azomethine Based Schiff Bases on Mild Steel Surface in 1 Mol L−1 HCl Medium: An Experimental, Density Functional Theory and Molecular Dynamics Simulation Study. Corros. Sci. 2019, 146, 134–151. DOI: 10.1016/j.corsci.2018.10.002.
  • Azeez, F. A.; Al-Rashed, O. A.; Nazeer, A. A. Controlling of Mild-Steel Corrosion in Acidic Solution Using Environmentally Friendly Ionic Liquid Inhibitors: Effect of Alkyl Chain. J. Mol. Liq. 2018, 265, 654–663. DOI: 10.1016/j.molliq.2018.05.093.
  • Ichchou, I.; Larabi, L.; Rouabhi, H.; Harek, Y.; Fellah, A. Electrochemical Evaluation and DFT Calculations of Aromatic Sulfonohydrazides as Corrosion Inhibitors for XC38 Carbon Steel in Acidic Media. J. Mol. Struct. 2019, 1198, 126898. DOI: 10.1016/j.molstruc.2019.126898.
  • Fadhil, A. A.; Khadom, A. A.; Liu, H.; Fu, C.; Wang, J.; Fadhil, N. A.; Mahood, H. B. (S)-6-Phenyl-2,3,5,6-Tetrahydroimidazo[2,1-b] Thiazole Hydrochloride as Corrosion Inhibitor of Steel in Acidic Solution: Gravimetrical, Electrochemical, Surface Morphology and Theoretical Simulation. J. Mol. Liq. 2019, 276, 503–518. DOI: 10.1016/j.molliq.2018.12.015.
  • Khalaf, M. M.; Tantawy, A. H.; Soliman, K. A.; Abd El-Lateef, H. M. Cationic Gemini-Surfactants Based on Waste Cooking Oil as New ‘Green’ Inhibitors for N80-Steel Corrosion in Sulphuric Acid: A Combined Empirical and Theoretical Approaches. J. Mol. Struct. 2020, 1203, 127442. DOI: 10.1016/j.molstruc.2019.127442.
  • Yıldız, R.; Döner, A.; Doğan, T.; Dehri, İ. Experimental Studies of 2-Pyridinecarbonitrile as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution. Corros. Sci. 2014, 82, 125–132. DOI: 10.1016/j.corsci.2014.01.008.
  • Gupta, N. K.; Verma, C.; Quraishi, M.; Mukherjee, A. Schiff’s Bases Derived from Llysine and Aromatic Aldehydes as Green Corrosion Inhibitors for Mild Steel: Experimental and Theoretical Studies. J. Mol. Liq. 2016, 215, 47–57. DOI: 10.1016/j.molliq.2015.12.027.
  • Sığırcık, G.; Yildirim, D.; Tüken, T. Synthesis and Inhibitory Effect of N,N′-Bis(1-Phenylethanol)Ethylenediamine against Steel Corrosion in HCl Media. Corros. Sci. 2017, 120, 184–193. DOI: 10.1016/j.corsci.2017.03.003.
  • Bentiss, F.; Traisnel, M.; Gengembre, L.; Lagrenee, M. Inhibition of Acidic Corrosion of Mild Steel by 3,5-Diphenyl-4H-1, 2, 4-Triazole. Appl. Surf. Sci. 2000, 161, 194–202. DOI: 10.1016/S0169-4332(00)00287-7.
  • Yadav, M.; Behera, D.; Kumar, S.; Sinha, R. R. Experimental and Quantum Chemical Studies on the Corrosion Inhibition Performance of Benzimidazole Derivatives for Mild Steel in HCl. Ind. Eng. Chem. Res. 2013, 52, 6318–6328. DOI: 10.1021/ie400099q.
  • Sığırcık, G. Investigation of 2,2′-Diaminodiethyl Disulfide for Mild Steel Protection in Acid Solution. J. Mol. Struct. 2020, 1212, 128120. DOI: 10.1016/j.molstruc.2020.128120.
  • Yıldız, R. An Electrochemical and Theoretical Evaluation of 4,6-Diamino-2-Pyrimidinethiol as a Corrosion Inhibitor for Mild Steel in HCl Solutions. Corros. Sci. 2015, 90, 544–553. DOI: 10.1016/j.corsci.2014.10.047.
  • Solmaz, R.; Altunbaş, E.; Kardaş, G. Adsorption and Corrosion Inhibition Effect of 2-((5-Mercapto-1,3,4-Thiadiazol-2-Ylimino)Methyl)Phenol Schiff Base on Mild Steel. Mater. Chem. Phys. 2011, 125, 796–801. DOI: 10.1016/j.matchemphys.2010.09.056.
  • Benmahammed, I.; Douadi, T.; Issaadi, S.; Al-Noaimi, M.; Chafaa, S. Heterocyclic Schiff Bases as Corrosion Inhibitors for Carbon Steel in 1 M HCl Solution: Hydrodynamic and Synergetic Effect. J. Dispers. Sci. Technol. 2020, 41, 1002–1021. DOI: 10.1080/01932691.2019.1614038.
  • Belayachi, M.; Serrar, H.; El Assyry, A.; Oudda, H.; Boukhris, S.; Touhami, M. E.; Zarrouk, A.; Hammouti, B.; Ebenso, E. E.; El Midaoui, A. Electrochemical Evaluation and DFT Studies of 2-(4-Chlorophenyl)-3-Hydroxy-4,6-Dioxo-8-Phenyl-4,6-Dihydropyrimido [2,1-b][1,3] Thiazine-7-Carbonitrile of Carbon Steel Corrosion in Hydrochloric Acid. Int. J. Electrochem. Sci. 2015, 10, 3038–3053.
  • Olasunkanmi, L. O.; Obot, I. B.; Kabanda, M. M.; Ebenso, E. E. Some Quinoxalin-6-yl Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Experimental and Theoretical Studies. J. Phys. Chem. C 2015, 119, 16004–16019. DOI: 10.1021/acs.jpcc.5b03285.
  • Focke, W. W.; Nhlapo, N. S.; Vuorinen, E. Thermal Analysis and FTIR Studies of Volatile Corrosion Inhibitor Model Systems. Corros. Sci. 2013, 77, 88–96. DOI: 10.1016/j.corsci.2013.07.030.
  • Keleşoğlu, A.; Yıldız, R.; Dehri, İ. 1-(2-Hydroxyethyl)-2-Imidazolidinone as Corrosion Inhibitor of Mild Steel in 0.5 M HCl Solution: Thermodynamic, Electrochemical and Theoretical Studies. J. Adhes. Sci. Technol. 2019, 33, 2010–2030. DOI: 10.1080/01694243.2019.1623967.
  • Odewole, O. A.; Ibeji, C. U.; Oluwasola, H. O.; Oyeneyin, O. E.; Akpomie, K. G.; Ugwu, C. M.; Ugwu, C. G.; Bakare, T. E. Synthesis and Anti-Corrosive Potential of Schiff Bases Derived 4-Nitrocinnamaldehyde for Mild Steel in HCl Medium: Experimental and DFT Studies. J. Mol. Struct. 2021, 1223, 129214. DOI: 10.1016/j.molstruc.2020.129214.
  • Zhang, B.; He, C.; Wang, C.; Sun, P.; Li, F.; Lin, Y. Synergistic Corrosion Inhibition of Environment-Friendly Inhibitors on the Corrosion of Mild Steel in Soft Water. Corros. Sci. 2015, 94, 6–20. DOI: 10.1016/j.corsci.2014.11.035.
  • Yıldız, R.; Doğan, T.; Dehri, İ. Evaluation of Corrosion Inhibition of Mild Steel in 0.1 M HCl by 4-Amino-3-Hydroxynaphthalene-1-Sulphonic Acid. Corros. Sci. 2014, 85, 215–221. DOI: 10.1016/j.corsci.2014.04.017.
  • Masroor, S.; Mobin, M.; Alam, M. J.; Ahmad, S. The Novel Iminium Surfactant p-Benzylidene Benzyldodecyl Iminium Chloride as a Corrosion Inhibitor for Plain Carbon Steel in 1 M HCl: Electrochemical and DFT Evaluation. RSC Adv. 2017, 7, 23182–23197. DOI: 10.1039/C6RA28426D.
  • Hussin, M. H.; Kassim, M. J. The Corrosion Inhibition and Adsorption Behavior of Uncaria Gambir Extract on Mild Steel in 1 M HCl. Mater. Chem. Phys. 2011, 125, 461–468. DOI: 10.1016/j.matchemphys.2010.10.032.
  • Mahalakshmi, D.; Hemapriya, V.; Subramaniam, E. P.; Chitra, S. Synergistic Effect of Antibiotics on the Inhibition Property of Aminothiazolyl Coumarin for Corrosion of Mild Steel in 0.5 M H2SO4. J. Mol. Liq. 2019, 284, 316–327. DOI: 10.1016/j.molliq.2019.03.158.
  • Li, X.; Deng, S.; Fu, H. Three Pyrazine Derivatives as Corrosion Inhibitors for Steel in 1.0 M H2SO4 Solution. Corros. Sci. 2011, 53, 3241–3247. DOI: 10.1016/j.corsci.2011.05.068.
  • Farag, A. A.; Ali, T. A. The Enhancing of 2-Pyrazinecarboxamide Inhibition Effect on the Acid Corrosion of Carbon Steel in Presence of Iodide Ions. J. Ind. Eng. Chem. 2015, 21, 627–634. DOI: 10.1016/j.jiec.2014.03.030.
  • Obot, I. B.; Umoren, S. A.; Ankah, N. K. Pyrazine Derivatives as Green Oil Field Corrosion Inhibitors for Steel. J. Mol. Liq. 2019, 277, 749–761. DOI: 10.1016/j.molliq.2018.12.108.
  • Keleşoğlu, A.; Sığırcık, G.; Yıldız, R.; Dehri, İ. Inhibition Efficiency of Pyrazinecarboxylic Acid on Mild Steel in Acidic Environment. J. Adhes. Sci. Technol. 2021, 35, 1426–1446. DOI: 10.1080/01694243.2020.1850055.
  • Deng, S.; Li, X.; Fu, H. Two Pyrazine Derivatives as Inhibitors of the Cold Rolled Steel Corrosion in Hydrochloric Acid Solution. Corros. Sci. 2011, 53, 822–828. DOI: 10.1016/j.corsci.2010.11.019.
  • Kissi, M.; Bouklah, M.; Hammouti, B.; Benkaddour, M. Establishment of Equivalent Circuits from Electrochemical Impedance Spectroscopy Study of Corrosion Inhibition of Steel by Pyrazine in Sulphuric Acidic Solution. Appl. Surf. Sci. 2006, 252, 4190–4197. DOI: 10.1016/j.apsusc.2005.06.035.
  • Sığırcık, G.; Tüken, T.; Erbil, M. Inhibition Efficiency of Aminobenzonitrile Compounds on Steel Surface. Appl. Surf. Sci. 2015, 324, 232–239. DOI: 10.1016/j.apsusc.2014.09.206.
  • Tansuğ, G.; Tüken, T.; Sığırcık, G.; Fındıkkıran, G.; Giray, E. S.; Erbil, M. Methyl 3-((2-Mercaptophenyl)Imino)Butanoate as an Effective Inhibitor against Steel Corrosion in HCl Solution. Ionics 2015, 21, 1461–1475. DOI: 10.1007/s11581-014-1296-8.
  • Yurt, A.; Balaban, A.; Ustün Kandemir, S.; Bereket, G.; Erk, B. Investigation on Some Schiff Bases as HCl Corrosion Inhibitors for Carbon Steel. Mater. Chem. Phys. 2004, 85, 420–426. DOI: 10.1016/j.matchemphys.2004.01.033.
  • Kelly, R. G.; Scully, J. R.; Shoesmith, D. W. Electrochemical Techniques in Corrosion Science and Engineering; Marcel Dekker Inc: New York (NY), 2003; 127290–127302.
  • Singh, D. K.; Ebenso, E. E.; Singh, M. K.; Behera, D.; Udayabhanu, G.; John, R. P. Non-Toxic Schiff Bases as Efficient Corrosion Inhibitors for Mild Steel in 1 M HCl: Electrochemical, AFM, FE-SEM and Theoretical Studies. J. Mol. Liq. 2018, 250, 88–99. DOI: 10.1016/j.molliq.2017.11.132.
  • Sığırcık, G.; Tüken, T.; Erbil, M. Assessment of the Inhibition Efficiency of 3,4-Diaminobenzonitrile against the Corrosion of Steel. Corros. Sci. 2016, 102, 437–445. DOI: 10.1016/j.corsci.2015.10.036.
  • Ongun Yüce, A. Corrosion Inhibition Behavior of Robinia pseudoacacia Leaves Extract as a Eco-Friendly Inhibitor on Mild Steel in Acidic Media. Met. Mater. Int. 2020, 26, 456–466. DOI: 10.1007/s12540-019-00509-7.
  • Bockris, J. O.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, 2000.
  • Xu, B.; Liu, Y.; Yin, X.; Yang, W.; Chen, Y. Experimental and Theoretical Study of Corrosion Inhibition of 3-Pyridinecarbozalde Thiosemicarbazone for Mild Steel in Hydrochloric Acid. Corros. Sci. 2013, 74, 206–213. DOI: 10.1016/j.corsci.2013.04.044.
  • Verma, C.; Quraishi, M. A.; Singh, A. 2-Amino-5-Nitro-4,6-Diarylcyclohex-1-Ene-1,3,3-Tricarbonitriles as New and Effective Corrosion Inhibitors for Mild Steel in 1M HCl: Experimental and Theoretical Studies. J. Mol. Liq. 2015, 212, 804–812. DOI: 10.1016/j.molliq.2015.10.026.
  • Solmaz, R. Investigation of Corrosion Inhibition Mechanism and Stability of Vitamin B1 on Mild Steel in 0.5 M HCl Solution. Corros. Sci. 2014, 81, 75–84. DOI: 10.1016/j.corsci.2013.12.006.
  • Hegazy, M. A.; Ahmed, H. M.; El-Tabei, A. S. Investigation of the Inhibitive Effect of p-Substituted 4-(N,N,N-Dimethyldodecylammonium Bromide)Benzylidene-Benzene-2-yl-Amine on Corrosion of Carbon Steel Pipelines in Acidic Medium. Corros. Sci. 2011, 53, 671–678. DOI: 10.1016/j.corsci.2010.10.004.
  • Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M.; Hamadanian, M.; Gandomi, A. Electrochemical and Theoretical Investigation on the Corrosion Inhibition of Mild Steel by Thiosalicylaldehyde Derivatives in Hydrochloric Acid Solution. Corros. Sci. 2008, 50, 2172–2181. DOI: 10.1016/j.corsci.2008.06.020.
  • Singh, D. K.; Kumar, S.; Udayabhanu, G.; John, R. P. 4(N,N-Dimethylamino) Benzaldehyde Nicotinic Hydrazone as Corrosion Inhibitor for Mild Steel in 1 M HCl Solution: An Experimental and Theoretical Study. J. Mol. Liq. 2016, 216, 738–746. DOI: 10.1016/j.molliq.2016.02.012.
  • Liao, L. L.; Mo, S.; Luo, H. Q.; Li, N. B. Corrosion Protection for Mild Steel by Extract from the Waste of Lychee Fruit in HCl Solution: Experimental and Theoretical Studies. J. Colloid Interface Sci. 2018, 520, 41–49. DOI: 10.1016/j.jcis.2018.02.071.
  • Tan, B.; Zhang, S.; Qiang, Y.; Guo, L.; Feng, L.; Liao, C.; Xu, Y.; Chen, S. A Combined Experimental and Theoretical Study of the Inhibition Effect of Three Disulfide-Based Flavouring Agents for Copper Corrosion in 0.5 F;M Sulfuric Acid. J. Colloid Interface Sci. 2018, 526, 268–280. DOI: 10.1016/j.jcis.2018.04.092.
  • Fouda, A.; Elewady, Y.; Abd El-Aziz, H.; Ahmed, A. Corrosion Inhibition of Carbon Steel in 0.5 M HCl Solution Using Cationic Surfactants. Int. J. Electrochem. Sci. 2012, 7, 10456–10475.
  • Haque, J.; Srivastava, V.; Chauhan, D. S.; Lgaz, H.; Quraishi, M. A. Microwave-Induced Synthesis of Chitosan Schiff Bases and Their Application as Novel and Green Corrosion Inhibitors: Experimental and Theoretical Approach. ACS Omega 2018, 3, 5654–5668. DOI: 10.1021/acsomega.8b00455.
  • Gece, G.; Bilgic, S. Quantum Chemical Study of Some Cyclic Nitro-Gen Compounds as Corrosion Inhibitors of Steel in NaCl Media. Corros. Sci. 2009, 51, 1876–1878. DOI: 10.1016/j.corsci.2009.04.003.
  • Abd, E.; Lateef, H. M. Experimental and Computational Investigation on the Corrosion Inhibition Characteristics of Mild Steel by Some Novel Synthesized Imines in Hydrochloric Acid Solutions. Corros. Sci. 2015, 92, 104–117. −
  • Sayed, H. E.; Ashry, E.; Nemr, A. E.; Ragab, S. Quantitative Structure Activity Relationships of Some Pyridine Derivatives as Corrosion Inhibitors of Steel in Acidic Medium. J. Mol. Model. 2012, 18, 1173–1188. DOI: 10.1007/s00894-011-1148-7.
  • Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20, 722–725. DOI: 10.1063/1.1700523.
  • Yüce, A. O.; Kardaş, G. Adsorption and Inhibition Effect of 2-Thiohydantoin on Mild Steel Corrosion in 0.1 M HCl. Corros. Sci. 2012, 58, 86–94. DOI: 10.1016/j.corsci.2012.01.013.
  • Yıldız, R. Adsorption and Inhibition Effect of 2,4-Diamino-6-Hydroxypyrimidine for Mild Steel Corrosion in HCl Medium: Experimental and Theoretical Investigation. Ionics 2019, 25, 859–870. DOI: 10.1007/s11581-018-2649-5.
  • Yıldız, R.; Doğru Mert, B. Theoretical and Experimental Investigations on Corrosion Control of Mild Steel in Hydrochloric Acid Solution by 4-Aminothiophenol. Anti-Corros. Methods Mater. 2019, 66, 127–137. DOI: 10.1108/ACMM-04-2018-1920.
  • Radilla, J.; Negrón-Silva, G. E.; Palomar-Pardavé, M.; Romero-Romo, M.; Galván, M. DFT Study of the Adsorption of the Corrosion Inhibitor 2-Mercaptoimidazole onto Fe(100) Surface. Electrochim. Acta 2013, 112, 577–586. DOI: 10.1016/j.electacta.2013.08.151.
  • Morsi, R. E.; Khamis, E. A.; Al-Sabagh, A. M. Polyaniline Nanotubes: Facile Synthesis, Electrochemical, Quantum Chemical Characteristics and Corrosion Inhibition Efficiency. J. Taiwan Inst. Chem. Eng. 2016, 60, 573–581. DOI: 10.1016/j.jtice.2015.10.028.
  • Lukovits, I.; Kalman, E.; Zucchi, F. Corrosion Inhibitors-Correlation between Electronic Structure and Efficiency. Corrosion 2001, 57, 3–8. DOI: 10.5006/1.3290328.
  • Ju, H.; Kai, Z. P.; Li, Y. Aminic Nitrogen-Bearing Polydentate Schiff Base Compounds as Corrosion Inhibitors for Iron in Acidic Media: A Quantum Chemical Calculation. Corros. Sci. 2008, 50, 865–871. DOI: 10.1016/j.corsci.2007.10.009.
  • Kikuchi, O. Systematic QSAR Procedures with Quantum Chemical Descriptors. Quant. Struct-Act. Relat. 1987, 6, 179–184. DOI: 10.1002/qsar.19870060406.
  • Gao, G.; Liang, C. Electrochemical and DFT Studies of β-Amino-Alcohols as Corrosion Inhibitors for Brass. Electrochim. Acta 2007, 52, 4554–4559. DOI: 10.1016/j.electacta.2006.12.058.
  • Khalil, N. Quantum Chemical Approach of Corrosion Inhibition. Electrochim. Acta 2003, 48, 2635–2640. DOI: 10.1016/S0013-4686(03)00307-4.
  • Rodriguez-Valdez, L. M.; Martinez-Villafane, A.; Glossman-Mitnik, D. Computational Simulation of the Molecular Structure and Properties of Heterocyclic Organic Compounds with Possible Corrosion Inhibition Properties. J. Mol. Struct. 2005, 713, 65–70. DOI: 10.1016/j.theochem.2004.10.036.
  • Stoyanova, A.; Petkova, G.; Peyerimhoff, S. D. Correlation Between the Molecular Structure and the Corrosion Inhibiting Effect of Some Pyrophthalone Compounds. Chem. Phys. 2002, 279, 1–6. DOI: 10.1016/S0301-0104(02)00408-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.