180
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of TiO2-Fe2O3 nanocomposite for the photocatalytic degradation of Direct Blue 199 and Basic Yellow 28 dyes under visible light irradiation

, , , &
Pages 630-638 | Received 06 Apr 2021, Accepted 15 Jul 2021, Published online: 06 Aug 2021

References

  • Manjunatha, S.; Biradar, D.; Aladakatti, Y. R. Nanotechnology and Its Applications in Agriculture: A Review. J. Farm Sci. 2016, 29, 1–13.
  • Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. A. Remediation of Wastewater Using Various Nano-Materials. Arab. J. Chem. 2019, 12, 4897–4919. DOI: 10.1016/j.arabjc.2016.10.004.
  • Beletskaya, I. P.; Ananikov, V. P. Unusual Influence of the Structures of Transition Metal Complexes on Catalytic C–S and C–Se Bond Formation under Homogeneous and Heterogeneous Conditions. Eur. J. Organic Chem. 2007, 21, 3431–3444.
  • Sheldon, R. Heterogeneous Catalytic Oxidation and Fine Chemicals. Stud. Surf. Sci. Catal. 1991, 59, 33–54.
  • Yoon, T. J.; Lee, W.; Oh, Y. S.; Lee, J. K. Magnetic Nanoparticles as a Catalyst Vehicle for Simple and Easy Recycling. New J. Chem. 2003, 27, 227–229. DOI: 10.1039/b209391j.
  • Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M. A.; Shirmardi-Shaghasemi, B.; Khavasi, H. Hantzsch Reaction on Free Nano-Fe2O3 Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability. Chem. Commun. (Camb.) 2011, 47, 9230–9232. DOI: 10.1039/c1cc12693h.
  • Desset, S. L.; Cole‐Hamilton, D. Carbon Dioxide Induced Phase Switching for Homogeneous‐Catalyst Recycling. Angew. Chem. 2009, 121, 1500–1502. DOI: 10.1002/ange.200804729.
  • Herrmann, W. A.; Fischer, R. W.; Rauch, M. U.; Scherer, W. Alkylrhenium Oxides as Homogeneous Epoxidation Catalysts: Activity, Selectivity, Stability, Deactivation. J. Mol. Liq. 1994, 86, 243–266.
  • Bonin, J.; Robert, M.; Routier, M. Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771. DOI: 10.1021/ja510290t.
  • Yang, C.; Li, S.; Zhang, Z.; Wang, H.; Liu, H.; Jiao, F.; Guo, Z.; Zhang, X.; Hu, W. Organic–Inorganic Hybrid Nanomaterials for Electrocatalytic CO2 Reduction. Nano. Micro. Small 2020, 16, 2001847. DOI: 10.1002/smll.202001847.
  • Zhu, Q.-L.; Xu, Q. J. E.; Science, E. Liquid Organic and Inorganic Chemical Hydrides for High-Capacity Hydrogen Storage. Energy Environ. Sci. 2015, 8, 478–512. DOI: 10.1039/C4EE03690E.
  • Steinrück, H.-P.; Wasserscheid, P. Ionic Liquids in Catalysis. Catal. Lett. 2015, 145, 380–397. DOI: 10.1007/s10562-014-1435-x.
  • Zhang, X.; Sun, Z.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y.; Tao, F. C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. J. Am. Chem. Soc. 2018, 140, 954–962. DOI: 10.1021/jacs.7b09314.
  • Saleheen, M.; Heyden, A. Liquid-Phase Modeling in Heterogeneous Catalysis. ACS Catal. 2018, 8, 2188–2194. DOI: 10.1021/acscatal.7b04367.
  • Singh, S. B.; Tandon, P. Catalysis: A Brief Review on Nano-Catalyst. J. Energy Chem. Eng. 2014, 106–115.
  • Pouran, S. R.; Raman, A. A. A.; Daud, W. Review on the Application of Modified Iron Oxides as Heterogeneous Catalysts in Fenton Reactions. J. Clean. Product 2014, 64, 24–35.
  • McAfee, S. M.; McCahill, J. S.; Macaulay, C. M.; Hendsbee, A. D.; Welch, G. Utility of a Heterogeneous Palladium Catalyst for the Synthesis of a Molecular Semiconductor via Stille, Suzuki, and Direct Heteroarylation Cross-Coupling Reactions. RSC Adv. 2015, 5, 26097–26106. DOI: 10.1039/C5RA02468D.
  • Nagarajan, D.; Venkatanarasimhan, S.; Research, P. Copper(II) Oxide Nanoparticles Coated Cellulose Sponge-An Effective Heterogeneous Catalyst for the Reduction of Toxic Organic Dyes. Environ. Sci. Pollut. Res. Int. 2019, 26, 22958–22970. DOI: 10.1007/s11356-019-05419-0.
  • Vilé, G.; Almora‐Barrios, N.; Mitchell, S.; López, N.; Pérez‐Ramírez, J. From the Lindlar Catalyst to Supported Ligand‐Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous‐Flow Three‐Phase Hydrogenation of Acetylenic Compounds. Chemistry 2014, 20, 5926–5937. DOI: 10.1002/chem.201304795.
  • Francke, R.; Little, R. Redox Catalysis in Organic Electrosynthesis: Basic Principles and Recent Developments. Chem. Soc. Rev. 2014, 43, 2492–2521. DOI: 10.1039/c3cs60464k.
  • Sun, Q.; Dai, Z.; Meng, X.; Xiao, F. Porous Polymer Catalysts with Hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018–6034. DOI: 10.1039/c5cs00198f.
  • Huang, N.; Xu, Y.; Jiang, D. High-Performance Heterogeneous Catalysis with Surface-Exposed Stable Metal Nanoparticles. Sci. Rep. 2014, 4, 1–8.
  • Mao, H.; Shen, Y.; Zhang, Q.; Ulaganathan, M.; Zhao, S.; Yang, Y.; Hng, H. Highly Active and Stable Heterogeneous Catalysts Based on the Entrapment of Noble Metal Nanoparticles in 3D Ordered Porous Carbon. Carbon 2016, 96, 75–82. DOI: 10.1016/j.carbon.2015.09.057.
  • Chen, J.; Wen, W.; Kong, L.; Tian, S.; Ding, F.; Xiong, Y.; Research, E. C. Magnetically Separable and Durable MnFe2O4 for Efficient Catalytic Ozonation of Organic Pollutants. Ind. Eng. Chem. Res. 2014, 53, 6297–6306. DOI: 10.1021/ie403914r.
  • Zhang, Y.; Pang, S.; Wei, Z.; Jiao, H.; Dai, X.; Wang, H.; Shi, F. Synthesis of a Molecularly Defined Single-Active Site Heterogeneous Catalyst for Selective Oxidation of N-Heterocycles. Nat. Commun. 2018, 9, 1–10.
  • Banković-Ilić, I. B.; Miladinović, M. R.; Stamenković, O. S.; Veljković, V.; Reviews, S. E. Application of Nano CaO–Based Catalysts in Biodiesel Synthesis. Renew. Sust. Energ. Rev. 2017, 72, 746–760. DOI: 10.1016/j.rser.2017.01.076.
  • Sun, Y.; Tian, P.; Ding, D.; Yang, Z.; Wang, W.; Xin, H.; Xu, J.; Han, Y. Revealing the Active Species of Cu-Based Catalysts for Heterogeneous Fenton Reaction. Appl. Catal. B: Environ. 2019, 258, 117985. DOI: 10.1016/j.apcatb.2019.117985.
  • Arora, N.; Mehta, A.; Mishra, A.; Basu, S. Nitrophenol Reduction Catalysed by Au-Ag Bimetallic Nanoparticles Supported on LDH: Homogeneous vs. Heterogeneous Catalysis. Appl. Clay Sci. 2018, 151, 1–9. DOI: 10.1016/j.clay.2017.10.015.
  • Nidheesh, P. Heterogeneous Fenton Catalysts for the Abatement of Organic Pollutants from Aqueous Solution: A Review. RSC Adv. 2015, 5, 40552–40577. DOI: 10.1039/C5RA02023A.
  • Shahmoradi, B.; Negahdary, M.; Maleki, A. Photodegradation of Methylene Blue Using Surface Modified Manganese Doped TiO2 Nanoparticles. Environ. Eng. Sci. 2012, 29, 1032–1037. DOI: 10.1089/ees.2011.0519.
  • Shahmoradi, B.; Maleki, A.; Byrappa, K.; Treatment, W. Removal of Disperse Orange 25 Using in Situ Surface-Modified Iron-Doped TiO2 Nanoparticles. Desalin. Water Treat. 2015, 53, 3615–3622. DOI: 10.1080/19443994.2013.873994.
  • Varma, R. Journey on Greener Pathways: From the Use of Alternate Energy Inputs and Benign Reaction Media to Sustainable Applications of Nano-Catalysts in Synthesis and Environmental Remediation. Green Chem. 2014, 16, 2027–2041. DOI: 10.1039/c3gc42640h.
  • Luo, L.; Li, H.; Peng, Y.; Feng, C.; Zeng, J. Rh‐Based Nanocatalysts for Heterogeneous Reactions. ChemNanoMat 2018, 4, 451–466. DOI: 10.1002/cnma.201800033.
  • Wang, A.; Li, J.; Zhang, T. Heterogeneous Single-Atom Catalysis. Nat. Rev. Chem. 2018, 2, 65–81. DOI: 10.1038/s41570-018-0010-1.
  • Hu, H.; Xin, J. H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and Stabilization of Metal Nanocatalysts for Reduction Reactions–A Review. J. Mater. Chem. A 2015, 3, 11157–11182. DOI: 10.1039/C5TA00753D.
  • Daâssi, D.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Biodegradation, Biodegradation of Textile Dyes by Immobilized Laccase from Coriolopsis Gallica into Ca-Alginate Beads. Int. Biodeterior. Biodeg. 2014, 90, 71–78. DOI: 10.1016/j.ibiod.2014.02.006.
  • Adegoke, K. A.; Bello, O. Industry, Dye Sequestration Using Agricultural Wastes as Adsorbents. Water Resour. Ind. 2015, 12, 8–24. DOI: 10.1016/j.wri.2015.09.002.
  • Benkhaya, B.; El Harfi, S. Classifications, Properties and Applications of Textile Dyes: A Review. App. J. Environ. Eng. Sci. 2017, 3, 311–320.
  • Shivaraju, H.; Midhun, G.; Kumar, K. A.; Pallavi, S.; Pallavi, N.; Behzad, S. Degradation of Selected Industrial Dyes Using Mg-Doped TiO 2 Polyscales under Natural Sun Light as an Alternative Driving Energy. Appl. Water Sci. 2017, 7, 3937–3948. DOI: 10.1007/s13201-017-0546-0.
  • Katheresan, V.; Kansedo, J.; Lau, S. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Arslan, S.; Eyvaz, M.; Gürbulak, E.; Yüksel, E. A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment – The Textile Industry Case, Textile Wastewater Treatment, E. Perrin Akçakoca Kumbasar and Ayşegül Ekmekci Körlü. IntechOpen. DOI: 10.5772/64140.
  • Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. DOI: 10.1021/cr400625j.
  • Bagheri, S.; Hir, Z. A. M.; Yousefi, A. T.; Hamid, S.; Materials, M. Progress on Mesoporous Titanium Dioxide: synthesis, Modification and Applications. Micropor. Mesopor. Mater. 2015, 218, 206–222. DOI: 10.1016/j.micromeso.2015.05.028.
  • Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-Dimensional Titanium Dioxide Nanomaterials: nanowires, Nanorods, and Nanobelts. Chem. Rev. 2014, 114, 9346–9384. DOI: 10.1021/cr400633s.
  • Zhang, B.; Cao, S.; Du, M.; Ye, X.; Wang, Y.; Ye, J. Titanium Dioxide (TiO2) Mesocrystals: Synthesis, Growth Mechanisms and Photocatalytic Properties. Catalysts 2019, 9, 91. DOI: 10.3390/catal9010091.
  • Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why Is Anatase a Better Photocatalyst than Rutile? Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2014, 4, 1–8.
  • Cruz, M.; Gomez, C.; Duran-Valle, C. J.; Pastrana-Martínez, L. M.; Faria, J. L.; Silva, A. M.; Faraldos, M.; Bahamonde, A. Bare TiO2 and Graphene Oxide TiO2 Photocatalysts on the Degradation of Selected Pesticides and Influence of the Water Matrix. Sci. Rep. 2017, 416, 1013–1021.
  • Wang, J.; Chen, Y.; Liu, G.; Cao, Y. Synthesis, Characterization and Photocatalytic Activity of Inexpensive and Non-Toxic Fe2O3− Fe3O4 Nano-Composites Supported by Montmorillonite and Modified by Graphene. Compos. B. Eng. 2017, 114, 211–222. DOI: 10.1016/j.compositesb.2017.01.055.
  • Rahman, M. M.; Fabregat, F.; Guerrero, A.; Asiri, A. M.; Bisquert, J. Semiconductor α‐Fe2O3 Hematite Fabricated Electrode for Sensitive Detection of Phenolic Pollutants. Chem. Select. 2018, 3, 12169–12174.
  • Iervolino, G.; Tantis, I.; Sygellou, L.; Vaiano, V.; Sannino, D.; Lianos, P. Photocurrent Increase by Metal Modification of Fe2O3 Photoanodes and Its Effect on Photoelectrocatalytic Hydrogen Production by Degradation of Organic Substances. Appl. Water Sci. 2017, 400, 176–183.
  • Nasirian, M.; Mehrvar, M.; Treatment, W. Photocatalytic Degradation of Aqueous Methyl Orange Using a Novel Ag/TiO2/Fe2O3 Photocatalyst Prepared by UV-Assisted Thermal Synthesis. DWT. 2019, 137, 371–380. DOI: 10.5004/dwt.2019.23192.
  • Chen, C.; Fang, Q.; Cao, S.; Yan, Y. Letters, Photocatalytic Property and Photocatalytic Mechanism of TiO2/Fe2O3 Hybrids for Degradation of Organic Dyes. Surf. Rev. Lett. 2019, 26, 1850196. DOI: 10.1142/S0218625X18501962.
  • Tu, T. H.; Tai, L. T.; Tien, N. T.; Huong, L. M.; Oanh, D. T. Y.; Nam, H. M.; Phong, M. T.; Hieu, N. Synthesis of Fe2O3/TiO2/Graphene Aerogel Composite as an Efficient Fenton‐Photocatalyst for Removal of Methylene Blue from Aqueous Solution. VJCH. 2020, 58, 697–704. DOI: 10.1002/vjch.202000109.
  • Mazhari, M.-P.; Hamadanian, M. Preparation and Characterization of Fe3O4@ SiO2@ TiO2 and Ag/Fe3O4@ SiO2@TiO2 Nanocomposites for Water Treatment: Process Optimization by Response Surface Methodology. J. Electron. Mater. 2018, 47, 7484–7496. DOI: 10.1007/s11664-018-6690-y.
  • Farahmandjou, M.; Soflaee, F. Synthesis and Characterization of α-Fe2O3 Nanoparticles by Simple Co-Precipitation Method. Phys. Chem. Res. 2015, 3, 191–196.DOI: 10.22036/pcr.2015.9193.
  • Nayak, R. K.; Dash, A.; Ray, B. Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of Epoxy/Glass Fiber Hybrid Composites. Proc. Mater. Sci. 2014, 6, 1359–1364. DOI: 10.1016/j.mspro.2014.07.115.
  • Shahmoradi, B.; Pirsaheb, M.; Pordel, M.; Khosravi, T.; Pawar, R. R.; Lee, S. Photocatalytic Performance of Chromium-Doped TiO2 Nanoparticles for Degradation of Reactive Black 5 under Natural Sunlight Illumination. DWT. 2017, 67, 324–331. DOI: 10.5004/dwt.2017.20373.
  • Tabasideh, S.; Maleki, A.; Shahmoradi, B.; Ghahremani, E.; McKay, G. Sonophotocatalytic Degradation of Diazinon in Aqueous Solution Using Iron-Doped TiO2 Nanoparticles. Sep. Purif. Technol. 2017, 189, 186–192. DOI: 10.1016/j.seppur.2017.07.065.
  • Murugesan, A.; Loganathan, M.; Senthil Kumar, P.; Dai-Viet, N. V. Cobalt and Nickel Oxides Supported Activated Carbon as an Effective Photocatalysts for the Degradation Methylene Blue Dye from Aquatic Environment. Sustain. Chem. Pharm. 2021, 21, 100406. DOI: 10.1016/j.scp.2021.100406.
  • Mahmoodi, N. M.; Abdi, J. Nanoporous Metal-Organic Framework (MOF-199): Synthesis, Characterization and Photocatalytic Degradation of Basic Blue 41. Microchem. J. 2019, 144, 436–442. DOI: 10.1016/j.microc.2018.09.033.
  • Saroj, S.; Singh, L.; Singh, S. V. Solution-Combustion Synthesis of Anion (Iodine) Doped TiO2 Nanoparticles for Photocatalytic Degradation of Direct Blue 199 Dye and Regeneration of Used Photocatalyst. J. Photochem. Photobiol. A: Chem. 2020, 396, 112532. DOI: 10.1016/j.jphotochem.2020.112532.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.