89
Views
3
CrossRef citations to date
0
Altmetric
Articles

TX-100 adsorption from aqueous solution using modified graphene oxide; optimization by response surface methodology and one factor at a time techniques

, & ORCID Icon
Pages 889-900 | Received 28 Apr 2021, Accepted 03 Sep 2021, Published online: 29 Sep 2021

References

  • Asefi, D.; Mahmoodi, N. M.; Arami, M. Effect of Nonionic Co-Surfactants on Corrosion Inhibition Effect of Cationic Gemini Surfactant. Colloid. Surf. A Physicochem. Eng. Asp. 2010, 355, 183–186. DOI: 10.1016/j.colsurfa.2009.12.019.
  • Akrami, M.; Danesh, S.; Eftekhari, M. Comparative Study on the Removal of Cationic Dyes Using Different Graphene Oxide Forms. J. Inorg. Organomet. Polym. 2019, 29, 1785–1797. DOI: 10.1007/s10904-019-01140-0.
  • Siyal, A. A.; Shamsuddin, M. R.; Low, A.; Rabat, N. E. A Review on Recent Developments in the Adsorption of Surfactants from Wastewater. J. Environ. Manage. 2020, 254, 109797. DOI: 10.1016/j.jenvman.2019.109797.
  • Palmer, M.; Hatley, H. The Role of Surfactants in Wastewater Treatment: Impact, Removal and Future Techniques: A Critical Review. Water Res. 2018, 147, 60–72. DOI: 10.1016/j.watres.2018.09.039.
  • Muherei, M. A.; Junin, R.; Bin Merdhah, A. B. Adsorption of Sodium Dodecyl Sulfate, Triton X100 and Their Mixtures to Shale and Sandstone: A Comparative Study. J. Pet. Sci. Eng. 2009, 67, 149–154. DOI: 10.1016/j.petrol.2009.05.006.
  • Zanoletti, A.; Federici, S.; Borgese, L.; Bergese, P.; Ferroni, M.; Depero, L. E.; Bontempi, E. Embodied Energy as Key Parameter for Sustainable Materials Selection: The Case of Reusing Coal Fly Ash for Removing Anionic Surfactants. J. Clean. Prod. 2017, 141, 230–236. DOI: 10.1016/j.jclepro.2016.09.070.
  • Valizadeh, S.; Younesi, H.; Bahramifar, N. Highly Mesoporous K2CO3 and KOH/Activated Carbon for SDBS Removal from Water Samples: Batch and Fixed-Bed Column Adsorption Process. Environ. Nanotechnol. Monit. Manag 2016, 6, 1–13.
  • Tsang, D. C. W.; Zhang, B. H. 2010 Selective Removal of Naphthalene from Non-Ionic and Anionic Surfactants Using Activated Carbon. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, pp 1–4.
  • Bindes, M. M. M.; Franco, M. R. Jr., Surfactant Removal from Aqueous Solutions onto Activated Carbon Using UV Spectroscopy. Desalin Water Treat. 2015, 56, 2890–2895. DOI: 10.1080/19443994.2014.963157.
  • Zhang, C.; Wen, H.; Huang, Y.; Shi, W. Adsorption of Anionic Surfactants from Aqueous Solution by High Content of Primary Amino Crosslinked Chitosan Microspheres. Int. J. Biol. Macromol. 2017, 97, 635–641. DOI: 10.1016/j.ijbiomac.2017.01.088.
  • Pham, T. D.; Pham, T. T.; Phan, M. N.; Ngo, T. M. V.; Dang, V. D.; Vu, C. M. Adsorption Characteristics of Anionic Surfactant onto Laterite Soil with Differently Charged Surfaces and Application for Cationic Dye Removal. J. Mol. Liq. 2020, 301, 112456. DOI: 10.1016/j.molliq.2020.112456.
  • Smail, H. A.; Shareef, K. M. 2011. Sorption Equilibrium and Thermodynamics of Triton X-100 Removal from Aqueous Solutions. 2011 International Conference on Biology, Environment and Chemistry IPCBEE. Vol. 24. pp 329–333.
  • Hamadamin, S. I. Adsorption of Triton X-100 Surfactant on Different Agricultural Soils. Iraqi Natl. J. Chem. 2009, 35, 415–426.
  • Leone, V.; Iovino, P. Sorption of a Cationic Surfactant Benzyldimethyldodecyl Ammonium Chloride onto a Natural Zeolite. Water. Air. Soil Pollut. 2016, 227, 409. DOI: 10.1007/s11270-016-3108-4.
  • Li, Z. Removal of Cationic Surfactants from Water Using Clinoptilolite Zeolite. Stud. Surf. Sci. Catal. 2007, 170, 2098–2103.
  • Taffarel, S. R.; Rubio, J. Adsorption of Sodium Dodecyl Benzene Sulfonate from Aqueous Solution Using a Modified Natural Zeolite with CTAB. Miner. Eng. 2010, 23, 771–779. DOI: 10.1016/j.mineng.2010.05.018.
  • Kareem, S. H.; Ali, I. H.; Jalhoom, M. Q. Kinetic and Thermodynamic Study of Triton X-100 Removal from Aqueous Solution of Functionalized Mesoporous Silica. Int. J. Sci. Basic Appl. Res. 2015, 21, 293–308.
  • Ganiyu, S. O.; Vieira Dos Santos, E.; Tossi de Araújo Costa, E. C.; Martínez-Huitle, C. A. Electrochemical Advanced Oxidation Processes (EAOPs) as Alternative Treatment Techniques for Carwash Wastewater Reclamation. Chemosphere 2018, 211, 998–1006. DOI: 10.1016/j.chemosphere.2018.08.044.
  • Aloui, F.; Kchaou, S.; Sayadi, S. Physicochemical Treatments of Anionic Surfactants Wastewater: Effect on Aerobic Biodegradability. J. Hazard. Mater. 2009, 164, 353–359. DOI: 10.1016/j.jhazmat.2008.08.009.
  • Karray, F.; Mezghani, M.; Mhiri, N.; Djelassi, B.; Sayadi, S. Scale-down Studies of Membrane Bioreactor Degrading Anionic Surfactants Wastewater: Isolation of New Anionic-Surfactant Degrading Bacteria. Int. Biodeterior. Biodegradation 2016, 114, 14–23. DOI: 10.1016/j.ibiod.2016.05.020.
  • Chaturvedi, V.; Kumar, A. Isolation of a Strain of Pseudomonas putida Capable of Metabolizing Anionic Detergent Sodium Dodecyl Sulfate (SDS). Iran. J. Microbiol. 2011, 3, 47.
  • Chaturvedi, V.; Kumar, A. Diversity of Culturable Sodium Dodecyl Sulfate (SDS) Degrading Bacteria Isolated from Detergent Contaminated Ponds Situated in Varanasi City, India. Int. Biodeterior. Biodegradation 2011, 65, 961–971. DOI: 10.1016/j.ibiod.2011.07.005.
  • Ojo, O. A.; Oso, B. A. Isolation and Characterization of Synthetic Detergentdegraders from Wastewater. African J. Biotechnol. 2008, 7, 3753–3760.
  • Shukor, M. Y.; Husin, W. S. W.; Rahman, M. F. A.; Shamaan, N. A.; Syed, M. A. Isolation and Characterization of an SDS-Degrading Klebsiella Oxytoca. J. Environ. Biol. 2009, 30, 129–134.
  • Khosravi, A.; Karimi, M.; Ebrahimi, H.; Fallah, N. Sequencing Batch Reactor/Nanofiltration Hybrid Method for Water Recovery from Textile Wastewater Contained Phthalocyanine Dye and Anionic Surfactant. J. Environ. Chem. Eng. 2020, 8, 103701. DOI: 10.1016/j.jece.2020.103701.
  • Collivignarelli, M. C.; Carnevale Miino, M.; Baldi, M.; Manzi, S.; Abbà, A.; Bertanza, G. Removal of Non-ionic and Anionic Surfactants from Real Laundry Wastewater by Means of a Full-Scale Treatment System. Process Saf. Environ. Prot. 2019, 132, 105–115. DOI: 10.1016/j.psep.2019.10.022.
  • González, S.; Petrovic, M.; Barceló, D. Evaluation of Two Pilot Scale Membrane Bioreactors for the Elimination of Selected Surfactants from Municipal Wastewaters. J. Hydrol. 2008, 356, 46–55. DOI: 10.1016/j.jhydrol.2008.03.023.
  • Samiey, B.; Golestan, S. Adsorption of Triton X-100 on Silica Gel: Effects of Temperature and Alcohols. Open Chem. 2010, 8, 361–369. DOI: 10.2478/s11532-009-0135-7.
  • Kochkodan, O.; Maksin, V. Mixed Adsorption of Hexadecylpyridinium Bromide and Triton X Surfactants at Graphitized Carbon Black. J. Serbian Chem. Soc. 2020, 0, 112.
  • Ghahramani, A.; Gheibi, M.; Eftekhari, M. Polyaniline-Coated Reduced Graphene Oxide as an Efficient Adsorbent for the Removal of Malachite Green from Water Samples. Polym. Bull. 2019, 76, 5269–5283. DOI: 10.1007/s00289-018-2651-0.
  • Eftekhari, M.; Akrami, M.; Gheibi, M.; Azizi-Toupkanloo, H.; Fathollahi-Fard, A. M.; Tian, G. Cadmium and Copper Heavy Metal Treatment from Water Resources by High-Performance Folic Acid-Graphene Oxide Nanocomposite Adsorbent and Evaluation of Adsorptive Mechanism Using Computational Intelligence, Isotherm, Kinetic, and Thermodynamic Analyses. Environ. Sci. Pollut. Res. Int. 2020, 27, 43999–44021. DOI: 10.1007/s11356-020-10175-7.
  • AlKinani, A.; Eftekhari, M.; Gheibi, M. Ligandless Dispersive Solid Phase Extraction of Cobalt Ion Using Magnetic Graphene Oxide as an Adsorbent Followed by Its Determination with Electrothermal Atomic Absorption Spectrometry. Inter. J. Environ. Anal. Chem. 2021, 101, 17–34. DOI: 10.1080/03067319.2019.1659254.
  • Jiang, L.; Liu, Y.; Zeng, G.; Xiao, F.; Hu, X.; Hu, X.; Wang, H.; Li, T.; Zhou, L.; Tan, X. Removal of 17β-Estradiol by Few-Layered Graphene Oxide Nanosheets from Aqueous Solutions: External Influence and Adsorption Mechanism. Chem. Eng. J. 2016, 284, 93–102. DOI: 10.1016/j.cej.2015.08.139.
  • Chen, P.; Li, H.; Song, S.; Weng, X.; He, D.; Zhao, Y. Adsorption of Dodecylamine Hydrochloride on Graphene Oxide in Water. Results Phys. 2017, 7, 2281–2288. DOI: 10.1016/j.rinp.2017.06.054.
  • Ali, I.; Basheer, A. A.; Mbianda, X. Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene Based Adsorbents for Remediation of Noxious Pollutants from Wastewater. Environ. Int. 2019, 127, 160–180. DOI: 10.1016/j.envint.2019.03.029.
  • Hiew, B. Y. Z.; Lee, L. Y.; Lai, K. C.; Gan, S.; Thangalazhy-Gopakumar, S.; Pan, G. T.; Yang, T. C. K. Adsorptive Decontamination of Diclofenac by Three-Dimensional Graphene-Based Adsorbent: Response Surface Methodology, Adsorption Equilibrium, Kinetic and Thermodynamic Studies. Environ. Res. 2019, 168, 241–253. DOI: 10.1016/j.envres.2018.09.030.
  • Tu, T. H.; Cam, P. T. N.; Huy, L. V. T.; Phong, M. T.; Nam, H. M.; Hieu, N. H. Synthesis and Application of Graphene Oxide Aerogel as an Adsorbent for Removal of Dyes from Water. Mater. Lett. 2019, 238, 134–137. DOI: 10.1016/j.matlet.2018.11.164.
  • He, K.; Zeng, G.; Chen, A.; Huang, Z.; Peng, M.; Huang, T.; Chen, G. Graphene Hybridized Polydopamine-Kaolin Composite as Effective Adsorbent for Methylene Blue Removal. Compos. Part B Eng. 2019, 161, 141–149. DOI: 10.1016/j.compositesb.2018.10.063.
  • Minitha, C. R.; Lalitha, M.; Jeyachandran, Y. L.; Senthilkumar, L.; Rajendra Kumar, R. T. Adsorption Behaviour of Reduced Graphene Oxide towards Cationic and Anionic Dyes: Co-Action of Electrostatic and π – π Interactions. Mater. Chem. Phys. 2017, 194, 243–252. DOI: 10.1016/j.matchemphys.2017.03.048.
  • Liao, C.; Zhao, X. R.; Jiang, X. Y.; Teng, J.; Yu, J. G. Hydrothermal Fabrication of Novel Three-Dimensional Graphene Oxide-Pentaerythritol Composites with Abundant Oxygen-Containing Groups as Efficient Adsorbents. Microchem. J. 2020, 152, 104288. DOI: 10.1016/j.microc.2019.104288.
  • Sherlala, A. I. A.; Raman, A. A. A.; Bello, M. M.; Asghar, A. A Review of the Applications of Organo-Functionalized Magnetic Graphene Oxide Nanocomposites for Heavy Metal Adsorption. Chemosphere 2018, 193, 1004–1017. DOI: 10.1016/j.chemosphere.2017.11.093.
  • Arshad, F.; Selvaraj, M.; Zain, J.; Banat, F.; Haija, M. A. Polyethylenimine Modified Graphene Oxide Hydrogel Composite as an Efficient Adsorbent for Heavy Metal Ions. Sep. Purif. Technol. 2019, 209, 870–880. DOI: 10.1016/j.seppur.2018.06.035.
  • Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. One-Pot Synthesis of Magnetic Graphene Oxide Composites as an Efficient and Recoverable Adsorbent for Cd (II) and Pb (II) Removal from Aqueous Solution. J. Hazard. Mater. 2020, 381, 120914. DOI: 10.1016/j.jhazmat.2019.120914.
  • Abdelrahman, M.; Jogaiah, S. 2020. Metabolic and Functional Diversity of Saponins. In Bioactive Molecules in Plant Defense. Springer: Cham, Switzerland. DOI: 10.1007/978-3-030-61149-1_3.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • Eftekhari, M.; Gheibi, M.; Akrami, M.; Iranzad, F. Solid-Phase Extraction of Ultra-Trace Levels of Lead Using Tannic Acid-Coated Graphene Oxide as an Efficient Adsorbent Followed by Electrothermal Atomic Absorption Spectrometry; Response Surface Methodology–Central Composite Design. New J. Chem. 2018, 42, 1159–1168. DOI: 10.1039/C7NJ03226A.
  • Botas, C.; Álvarez, P.; Blanco, C.; Santamaría, R.; Granda, M.; Ares, P.; Rodríguez-Reinoso, F.; Menéndez, R. The Effect of the Parent Graphite on the Structure of Graphene Oxide. Carbon 2012, 50, 275–282. DOI: 10.1016/j.carbon.2011.08.045.
  • Lingamdinne, L. P.; Chang, Y. Y.; Yang, J. K.; Singh, J.; Choi, E. H.; Shiratani, M.; Koduru, J. R.; Attri, P. Biogenic Reductive Preparation of Magnetic Inverse Spinel Iron Oxide Nanoparticles for the Adsorption Removal of Heavy Metals. Chem. Eng. J. 2017, 307, 74–84. DOI: 10.1016/j.cej.2016.08.067.
  • Lingamdinne, L. P.; Choi, Y. L.; Kim, I. S.; Yang, J. K.; Koduru, J. R.; Chang, Y. Y. Preparation and Characterization of Porous Reduced Graphene Oxide Based Inverse Spinel Nickel Ferrite Nanocomposite for Adsorption Removal of Radionuclides. J. Hazard. Mater. 2017, 326, 145–156. DOI: 10.1016/j.jhazmat.2016.12.035.
  • Eftekhari, M.; Gheibi, M.; Azizi-Toupkanloo, H.; Hossein-Abadi, Z.; Khraisheh, M.; Fathollahi-Fard, A. M.; Tian, G. Statistical Optimization, Soft Computing Prediction, Mechanistic and Empirical Evaluation for Fundamental Appraisal of Copper, Lead and Malachite Green Adsorption. J. Ind. Inf. Integr. 2021, 23, 100219. DOI: 10.1016/j.jii.2021.100219.
  • Lingamdinne, L. P.; Koduru, J. R.; Choi, Y. L.; Chang, Y. Y.; Yang, J. K. Studies on Removal of Pb (II) and Cr (III) Using Graphene Oxide Based Inverse Spinel Nickel Ferrite Nano-Composite as Sorbent. Hydrometallurgy 2016, 165, 64–72. DOI: 10.1016/j.hydromet.2015.11.005.
  • Lingamdinne, L. P.; Koduru, J. R.; Roh, H.; Choi, Y. L.; Chang, Y. Y.; Yang, J. K. Adsorption Removal of Co (II) from Waste-Water Using Graphene Oxide. Hydrometallurgy 2016, 165, 90–96. DOI: 10.1016/j.hydromet.2015.10.021.
  • Ho, Y. S.; McKay, G.; Wase, D. A. J.; Forster, C. F. Study of the Sorption of Divalent Metal Ions on to Peat. Adsorpt. Sci. Technol. 2000, 18, 639–650. DOI: 10.1260/0263617001493693.
  • Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. DOI: 10.1016/j.cherd.2012.07.007.
  • Gheibi, M.; Eftekhari, M.; Tabrizi, M. G.; Fathollahi-Fard, A. M.; Tian, G. Mechanistic Evaluation of Cationic Dyes Adsorption onto Low-Cost Calcinated Aerated Autoclaved Concrete Wastes. Int. J. Environ. Sci. Technol. 2021 In press. DOI: 10.1007/s13762-021-03576-9.
  • Santhi, T.; Manonmani, S.; Smitha, T. Removal of Malachite Green from Aqueous Solution by Activated Carbon Prepared from the Epicarp of Ricinus communis by Adsorption. J. Hazard. Mater. 2010, 179, 178–186. DOI: 10.1016/j.jhazmat.2010.02.076.
  • Kannan, N.; Sundaram, M. M. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons-a Comparative Study. Dye Pig 2001, 51, 25–40. DOI: 10.1016/S0143-7208(01)00056-0.
  • Hameed, B. H. Equilibrium and Kinetics Studies of 2, 4, 6-Trichlorophenol Adsorption onto Activated Clay. Colloid. Surf. A Physicochem. Eng. Asp. 2007, 307, 45–52. DOI: 10.1016/j.colsurfa.2007.05.002.
  • Luo, X.; Zhang, L. High Effective Adsorption of Organic Dyes on Magnetic Cellulose Beads Entrapping Activated Carbon. J. Hazard. Mater. 2009, 171, 340–347. DOI: 10.1016/j.jhazmat.2009.06.009.
  • Weng, C. H.; Lin, Y. T.; Tzeng, T. W. Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pineapple Leaf Powder. J. Hazard. Mater. 2009, 170, 417–424. DOI: 10.1016/j.jhazmat.2009.04.080.
  • Mi-Na, Z.; Xue-Pin, L.; Bi, S. Adsorption of Surfactants on Chromium Leather Waste. J. Soc. Leather Technol. Chem. 2006, 90, 1.
  • Paria, S.; Manohar, C.; Khilar, K. C. Adsorption of Anionic and Non-Ionic Surfactants on a Cellulosic Surface. Colloid. Surf. A Physicochem. Eng. Asp. 2005, 252, 221–229. DOI: 10.1016/j.colsurfa.2004.09.022.
  • Shimabayashi, S.; Hoshino, M.; Ohnishi, T.; Hino, T. Adsorption of Nonionic Surfactants, Triton X and Triton N, on Hydroxyapatite after Surface Modification with Sodium Dodecyl Sulfate in an Aqueous Phase. Stud. Surf. Sci. Catal. 2001, 132, 125–128.
  • Bai, Y.; Lin, D.; Wu, F.; Wang, Z.; Xing, B. Adsorption of Triton X-Series Surfactants and Its Role in Stabilizing Multi-Walled Carbon Nanotube Suspensions. Chemosphere 2010, 79, 362–367. DOI: 10.1016/j.chemosphere.2010.02.023.
  • Cheminski, T.; de Figueiredo Neves, T.; Mayara Silva, P.; Henrique Guimarães, C.; Prediger, P. Insertion of Phenyl Ethyleneglycol Units on Graphene Oxide as Stabilizers and Its Application for Surfactant Removal. J. Environ. Chem. Eng. 2019, 7, 102976. DOI: 10.1016/j.jece.2019.102976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.