426
Views
7
CrossRef citations to date
0
Altmetric
Articles

Preparation, characterization, optimization, and antibacterial evaluation of nano-emulsion incorporating essential oil extracted from Teucrium polium L

ORCID Icon & ORCID Icon
Pages 922-932 | Received 07 Jun 2021, Accepted 05 Sep 2021, Published online: 24 Sep 2021

References

  • Dadonaite, B.; Ritchie, H.; Roser, M. Diarrheal Diseases. Our World in Data, 2018.
  • Awol, N.; Nigusse, D.; Ali, M. Prevalence and Antimicrobial Susceptibility Profile of Salmonella and Shigella among Food Handlers Working in Food Establishment at Hawassa City, Southern Ethiopia. BMC Res. Notes 2019, 12, 712. DOI: 10.1186/s13104-019-4725-y.
  • Alsayeqh, A. F. Salmonellosis in Saudi Arabia; an Underestimated Disease? Alexandria J. Vet. Sci. 2020, 67, 30–38. DOI: 10.5455/ajvs.136155.
  • Al-Seghayer, M. S.; Al-Sarraj, F. M. The Outbreak of Foodborne Disease by Pathogenic Enterobacteriaceae Antimicrobial Resistance—A Review. AFSJ. 2021, 20, 91–99. DOI: 10.9734/afsj/2021/v20i630312.
  • Al-Nabulsi, A. A.; Osaili, T. M.; AbuNaser, R. A.; Olaimat, A. N.; Ayyash, M.; Al-Holy, M. A.; Kadora, K. M.; Holley, R. A. Factors Affecting the Viability of Staphylococcus aureus and Production of Enterotoxin during Processing and Storage of White-Brined Cheese. J. Dairy Sci. 2020, 103, 6869–6881. DOI: 10.3168/jds.2020-18158.
  • Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M. A.; Prabhakar, A.; Shalla, A. H.; Rather, M. A. A Comprehensive Review of the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents against Drug-Resistant Microbial Pathogens. Microb. Pathog. 2019, 134, 103580. DOI: 10.1016/j.micpath.2019.103580.
  • Berglund, B. Environmental Dissemination of Antibiotic Resistance Genes and Correlation to Anthropogenic Contamination with Antibiotics. Infect. Ecol. Epidemiol. 2015, 5, 28564. DOI: 10.3402/iee.v5.28564.
  • Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. DOI: 10.3390/medicines3040025.
  • Long, N.; Tang, H.; Sun, F.; Lin, L.; Dai, M. Effect and Mechanism of Citral against Methicillin-Resistant Staphylococcus aureus in Vivo. J. Sci. Food Agric. 2019, 99, 4423–4429. DOI: 10.1002/jsfa.9677.
  • Yazgan, H. Investigation of Antimicrobial Properties of Sage Essential Oil and Its Nanoemulsion as Antimicrobial Agent. LWT 2020, 130, 109669. DOI: 10.1016/j.lwt.2020.109669.
  • Guo, M.; Zhang, L.; He, Q.; Arabi, S. A.; Zhao, H.; Chen, W.; Ye, X.; Liu, D. Synergistic Antibacterial Effects of Ultrasound and Thyme Essential Oils Nanoemulsion against Escherichia coli O157:H7. Ultrason. Sonochem. 2020, 66, 104988. DOI: 10.1016/j.ultsonch.2020.104988.
  • Gago, C.; Artiga-Artigas, M.; Antunes, M.; Faleiro, M.; Miguel, M.; Martín-Belloso, O. Effectiveness of Nanoemulsions of Clove and Lemongrass Essential Oils and Their Major Components against Escherichia coli and Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2721–2736. DOI: 10.1007/s13197-019-03762-1.
  • Najafi-Taher, R.; Ghaemi, B.; Kharrazi, S.; Rasoulikoohi, S.; Amani, A. Promising Antibacterial Effects of Silver Nanoparticle-Loaded Tea Tree Oil Nanoemulsion: A Synergistic Combination against Resistance Threat. AAPS PharmSciTech 2018, 19, 1133–1140. DOI: 10.1208/s12249-017-0922-y.
  • Falleh, H.; Jemaa, M. B.; Neves, M. A.; Isoda, H.; Nakajima, M.; Ksouri, R. Formulation, Physicochemical Characterization, and Anti-E. coli Activity of Food-Grade Nanoemulsions Incorporating Clove, Cinnamon, and Lavender Essential Oils. Food Chem. 2021, 359, 129963. DOI: 10.1016/j.foodchem.2021.129963.
  • Dávila-Rodríguez, M.; Lopez-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M. T. Antimicrobial Activity of Nanoemulsions of Cinnamon, Rosemary, and Oregano Essential Oils on Fresh Celery. LWT 2019, 112, 108247. DOI: 10.1016/j.lwt.2019.06.014.
  • Bukhari, N. A.; Al-Otaibi, R. A.; Ibhrahim, M. M. Biodiversity Characteristics of Teucrium Polium Species in Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 181–185. DOI: 10.1016/j.sjbs.2014.11.002.
  • Khani, A.; Heydarian, M. Fumigant and Repellent Properties of Sesquiterpene-Rich Essential Oil from Teucrium polium Subsp. capitatum (L.). Asian Pac. J. Trop. Med. 2014, 7, 956–961. DOI: 10.1016/S1995-7645(14)60169-3.
  • Khazaei, M.; Nematollahi-Mahani, S. N.; Mokhtari, T.; Sheikhbahaei, F. Review on Teucrium Polium Biological Activities and Medical Characteristics against Different Pathologic Situations. J. Contemp. Med. Sci. 2018, 4. 1-6.
  • Guetata, A.; Al-Ghamdi, F. A. Analysis of the Essential Oil of the Germander (Teucrium polium L.) Aerial Parts from the Northern Region of Saudi Arabia. IJABPT. 2014, 5, 128–135.
  • Kerbouche, L.; Hazzit, M.; Ferhat, M.-A.; Baaliouamer, A.; Miguel, M. G. Biological Activities of Essential Oils and Ethanol Extracts of Teucrium polium Subsp. capitatum (L.) Briq. and Origanum floribundum Munby. J. Essent. Oil Bear. Plants 2015, 18, 1197–1208. DOI: 10.1080/0972060X.2014.935065.
  • Bendjabeur, S.; Benchabane, O.; Bensouici, C.; Hazzit, M.; Baaliouamer, A.; Bitam, A. Antioxidant and Anticholinesterase Activity of Essential Oils and Ethanol Extracts of Thymus algeriensis and Teucrium polium from Algeria. Food Meas. 2018, 12, 2278–2288. DOI: 10.1007/s11694-018-9845-x.
  • El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Abdellaoui, A. Phytochemistry, Antioxidant and Antibacterial Activities of Two Moroccan Teucrium polium L. Subspecies: Preventive Approach against Nosocomial Infections. Arabian J. Chem. 2020, 13, 3866–3874. DOI: 10.1016/j.arabjc.2019.04.001.
  • Esmaeili, A.; Asgari, A. In Vitro Release and Biological Activities of Carum copticum Essential Oil (CEO) Loaded Chitosan Nanoparticles. Int. J. Biol. Macromol. 2015, 81, 283–290. DOI: 10.1016/j.ijbiomac.2015.08.010.
  • Mansouri, S.; Pajohi-Alamoti, M.; Aghajani, N.; Bazargani-Gilani, B.; Nourian, A. Stability and Antibacterial Activity of Thymus daenensis L. Essential Oil Nanoemulsion in Mayonnaise. J. Sci. Food Agric. 2021, 101, 3880–3888. DOI: 10.1002/jsfa.11026.
  • Almasi, L.; Radi, M.; Amiri, S.; Torri, L. Fully Dilutable Thymus Vulgaris Essential Oil:Acetic or Propionic Acid Microemulsions Are Potent Fruit Disinfecting Solutions. Food Chem. 2021, 343, 128411. DOI: 10.1016/j.foodchem.2020.128411.
  • Upadhyay, N.; Singh, V. K.; Dwivedy, A. K.; Chaudhari, A. K.; Dubey, N. K. Assessment of Nanoencapsulated Cananga odorata Essential Oil in Chitosan Nanopolymer as a Green Approach to Boost the Antifungal, Antioxidant and in Situ Efficacy. Int. J. Biol. Macromol. 2021, 171, 480–490. DOI: 10.1016/j.ijbiomac.2021.01.024.
  • Hassan, M. E.; Hassan, R. R.; Diab, K. A.; El-Nekeety, A. A.; Hassan, N. S.; Abdel-Wahhab, M. A. Nanoencapsulation of Thyme Essential Oil: A New Avenue to Enhance Its Protective Role against Oxidative Stress and Cytotoxicity of Zinc Oxide Nanoparticles in Rats. Environ. Sci. Pollut. Res. 2021, 28, 1–18. DOI: 10.1007/s11356-021-14427-y.
  • Al-Otaibi, W. Rosemary Oil Nano-Emulsion Potentiates the Apoptotic Effect of Mitomycin C on Cancer Cells in Vitro. PHAR 2021, 68, 201–209. DOI: 10.3897/pharmacia.68.e60685.
  • Donsì, F.; Ferrari, G. Essential Oil Nanoemulsions as Antimicrobial Agents in Food. J. Biotechnol. 2016, 233, 106–120. DOI: 10.1016/j.jbiotec.2016.07.005.
  • McClements, D. J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. DOI: 10.1080/10408398.2011.559558.
  • Ardekani-Zadeh, A. H.; Hosseini, S. F. Electrospun Essential Oil-Doped Chitosan/poly(ε-Caprolactone) Hybrid Nanofibrous Mats for Antimicrobial Food Biopackaging Exploits. Carbohydr. Polym. 2019, 223, 115108. DOI: 10.1016/j.carbpol.2019.115108.
  • Castro-Rosas, J.; Ferreira-Grosso, C. R.; Gómez-Aldapa, C. A.; Rangel-Vargas, E.; Rodríguez-Marín, M. L.; Guzmán-Ortiz, F. A.; Falfan-Cortes, R. N. Recent Advances in Microencapsulation of Natural Sources of Antimicrobial Compounds Used in Food—A Review. Food Res. Int. 2017, 102, 575–587. DOI: 10.1016/j.foodres.2017.09.054.
  • Migahid, A. M. Flora of Saudi Arabia, 1998-2000. Flora of Saudi Arabia. University Libraries, King Saud University, Riyadh.
  • Tsukatani, T.; Suenaga, H.; Higuchi, T.; Akao, T.; Ishiyama, M.; Ezoe, K.; Matsumoto, K. Colorimetric Cell Proliferation Assay for Microorganisms in Microtiter Plate Using Water-Soluble Tetrazolium Salts. J. Microbiol. Methods 2008, 75, 109–116. DOI: 10.1016/j.mimet.2008.05.016.
  • Cozzani, S.; Muselli, A.; Desjobert, J. M.; Bernardini, A. F.; Tomi, F.; Casanova, J. Chemical Composition of Essential Oil of Teucrium polium Subsp. capitatum (L.) from Corsica. Flavour Fragr. J. 2005, 20, 436–441. DOI: 10.1002/ffj.1463.
  • McEvoy, E.; Donegan, S.; Power, J.; Altria, K. Capillary Electrophoresis | Microemulsion Electrokinetic Chromatography. In Encyclopedia of Separation Science; Wilson, I. D., Ed.; Academic Press: Oxford, 2007; pp 1–10.
  • Troncoso, E.; Aguilera, J. M.; McClements, D. J. Influence of Particle Size on the in Vitro Digestibility of Protein-Coated Lipid Nanoparticles. J. Colloid Interface Sci. 2012, 382, 110–116. DOI: 10.1016/j.jcis.2012.05.054.
  • Qian, C.; McClements, D. J. Formation of Nanoemulsions Stabilized by Model Food-Grade Emulsifiers Using High-Pressure Homogenization: Factors Affecting Particle Size. Food Hydrocolloids 2011, 25, 1000–1008. DOI: 10.1016/j.foodhyd.2010.09.017.
  • Witayaudom, P.; Klinkesorn, U. Effect of Surfactant Concentration and Solidification Temperature on the Characteristics and Stability of Nanostructured Lipid Carrier (NLC) Prepared from Rambutan (Nephelium lappaceum L.) Kernel Fat. J. Colloid Interface Sci. 2017, 505, 1082–1092. DOI: 10.1016/j.jcis.2017.07.008.
  • Aziz, A.; Jusoh, A.; Mamat, R.; Abdullah, A. A. Effect of Water Content and Tween 80 to the Stability of Emulsified Biodiesel. AMM. 2014, 465-466, 191–195. DOI: 10.4028/www.scientific.net/AMM.465-466.191.
  • Joung, H. J.; Choi, M. J.; Kim, J. T.; Park, S. H.; Park, H. J.; Shin, G. H. Development of Food-Grade Curcumin Nanoemulsion and Its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion. J. Food Sci. 2016, 81, N745–N753. DOI: 10.1111/1750-3841.13224.
  • Niemann, B.; Sundmacher, K. Nanoparticle Precipitation in Microemulsions: Population Balance Model and Identification of Bivariate Droplet Exchange Kernel. J. Colloid Interface Sci. 2010, 342, 361–371. DOI: 10.1016/j.jcis.2009.10.066.
  • Tadros, T. F. Emulsion Formation, Stability, and Rheology. In Emulsion Formation and Stability, John Wiley & Sons: Wokingham; 2013, pp 1–75.
  • Uluata, S.; Decker, E. A.; McClements, D. J. Optimization of Nanoemulsion Fabrication Using Microfluidization: Role of Surfactant Concentration on Formation and Stability. Food Biophys. 2016, 11, 52–59. DOI: 10.1007/s11483-015-9416-1.
  • Saberi, A. H.; Fang, Y.; McClements, D. J. Fabrication of Vitamin E-Enriched Nanoemulsions by Spontaneous Emulsification: Effect of Propylene Glycol and Ethanol on Formation, Stability, and Properties. Food Res. Int. 2013, 54, 812–820. DOI: 10.1016/j.foodres.2013.08.028.
  • Maindarkar, S. N.; Bongers, P.; Henson, M. A. Predicting the Effects of Surfactant Coverage on Drop Size Distributions of Homogenized Emulsions. Chem. Eng. Sci. 2013, 89, 102–114. DOI: 10.1016/j.ces.2012.12.001.
  • Rao, J.; McClements, D. J. Food-Grade Microemulsions and Nanoemulsions: Role of Oil Phase Composition on Formation and Stability. Food Hydrocolloids 2012, 29, 326–334. DOI: 10.1016/j.foodhyd.2012.04.008.
  • Mei, Z.; Liu, S.; Wang, L.; Jiang, J.; Xu, J.; Sun, D. Preparation of Positively Charged Oil/Water Nano-Emulsions with a Sub-PIT Method. J. Colloid Interface Sci. 2011, 361, 565–572. DOI: 10.1016/j.jcis.2011.05.011.
  • Musa, S. H.; Basri, M.; Masoumi, H. R. F.; Karjiban, R. A.; Abd Malek, E.; Basri, H.; Shamsuddin, A. F. Formulation Optimization of Palm Kernel Oil Esters Nanoemulsion-Loaded with Chloramphenicol Suitable for Meningitis Treatment. Colloids Surf. B Biointerfaces 2013, 112, 113–119. DOI: 10.1016/j.colsurfb.2013.07.043.
  • Kentish, S.; Wooster, T.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The Use of Ultrasonics for Nanoemulsion Preparation. Innovative Food Sci. Emerg. Technol. 2008, 9, 170–175. DOI: 10.1016/j.ifset.2007.07.005.
  • Guttoff, M.; Saberi, A. H.; McClements, D. J. Formation of Vitamin D Nanoemulsion-Based Delivery Systems by Spontaneous Emulsification: Factors Affecting Particle Size and Stability. Food Chem. 2015, 171, 117–122. DOI: 10.1016/j.foodchem.2014.08.087.
  • Komaiko, J.; McClements, D. J. Optimization of Isothermal Low-Energy Nanoemulsion Formation: Hydrocarbon Oil, Non-Ionic Surfactant, and Water Systems. J. Colloid Interface Sci. 2014, 425, 59–66. DOI: 10.1016/j.jcis.2014.03.035.
  • Cheong, A. M.; Tan, C. P.; Nyam, K. L. Emulsifying Conditions and Processing Parameters Optimisation of Kenaf Seed Oil-in-Water Nanoemulsions Stabilised by Ternary Emulsifier Mixtures. Food Sci. Technol. Int. 2018, 24, 404–413. DOI: 10.1177/1082013218760882.
  • Freire, T. B.; Dario, M. F.; Mendes, O. G.; Oliveira, ACd.; Vetore Neto, A.; Faria, DLAd.; Silva, VRLe.; Baby, A. R.; Velasco, M. V. R. Nanoemulsion Containing Caffeine for Cellulite Treatment: Characterization and in Vitro Evaluation. Braz. J. Pharm. Sci. 2019, 55, 1–11. DOI: 10.1590/s2175-97902019000218236.
  • Manchun, S.; Dass, C. R.; Sriamornsak, P. Designing Nanoemulsion Templates for Fabrication of Dextrin Nanoparticles via Emulsion Cross-Linking Technique. Carbohydr. Polym. 2014, 101, 650–655. DOI: 10.1016/j.carbpol.2013.09.049.
  • Polychniatou, V.; Tzia, C. Study of Formulation and Stability of Co‐Surfactant Free Water‐in‐Olive Oil Nano‐and Submicron Emulsions with Food Grade Non‐Ionic Surfactants. J. Am. Oil Chem. Soc. 2014, 91, 79–88. DOI: 10.1007/s11746-013-2356-3.
  • Garzoli, S.; Petralito, S.; Ovidi, E.; Turchetti, G.; Laghezza Masci, V.; Tiezzi, A.; Trilli, J.; Cesa, S.; Casadei, M. A.; Giacomello, P.; Paolicelli, P. Lavandula x Intermedia Essential Oil and Hydrolate: Evaluation of Chemical Composition and Antibacterial Activity before and after Formulation in Nanoemulsion. Ind. Crops Prod. 2020, 145, 112068. DOI: 10.1016/j.indcrop.2019.112068.
  • Franklyne, J. S.; Iyer, S.; Ebenazer, A.; Mukherjee, A.; Chandrasekaran, N. Essential Oil Nanoemulsions: Antibacterial Activity in Contaminated Fruit Juices. Int. J. Food Sci. Technol. 2019, 54, 2802–2810. DOI: 10.1111/ijfs.14195.
  • Liew, S. N.; Utra, U.; Alias, A. K.; Tan, T. B.; Tan, C. P.; Yussof, N. S. Physical, Morphological and Antibacterial Properties of Lime Essential Oil Nanoemulsions Prepared via Spontaneous Emulsification Method. LWT 2020, 128, 109388. DOI: 10.1016/j.lwt.2020.109388.
  • Paudel, S. K.; Bhargava, K.; Kotturi, H. Antimicrobial Activity of Cinnamon Oil Nanoemulsion against Listeria Monocytogenes and Salmonella Spp. on Melons. LWT 2019, 111, 682–687. DOI: 10.1016/j.lwt.2019.05.087.
  • Ryu, V.; Corradini, M. G.; McClements, D. J.; McLandsborough, L. Impact of Ripening Inhibitors on Molecular Transport of Antimicrobial Components from Essential Oil Nanoemulsions. J. Colloid Interface Sci. 2019, 556, 568–576. DOI: 10.1016/j.jcis.2019.08.059.
  • Chuesiang, P.; Sanguandeekul, R.; Siripatrawan, U. Enhancing Effect of Nanoemulsion on Antimicrobial Activity of Cinnamon Essential Oil against Foodborne Pathogens in Refrigerated Asian Seabass (Lates calcarifer) Fillets. Food Control 2021, 122, 107782. DOI: 10.1016/j.foodcont.2020.107782.
  • Cox, S. D.; Mann, C.; Markham, J.; Bell, H. C.; Gustafson, J.; Warmington, J.; Wyllie, S. G. The Mode of Antimicrobial Action of the Essential Oil of Melaleuca alternifolia (Tea Tree Oil). J. Appl. Microbiol. 2000, 88, 170–175. DOI: 10.1046/j.1365-2672.2000.00943.x.
  • Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Eugenol-Loaded Antimicrobial Nanoemulsion Preserves Fruit Juice against, Microbial Spoilage. Colloids Surf. B Biointerfaces 2014, 114, 392–397. DOI: 10.1016/j.colsurfb.2013.10.034.
  • Khan, M. S. A.; Malik, A.; Ahmad, I. Anti-Candidal Activity of Essential Oils Alone and in Combination with Amphotericin B or Fluconazole against Multi-Drug Resistant Isolates of Candida albicans. Med. Mycol. 2012, 50, 33–42. DOI: 10.3109/13693786.2011.582890.
  • Zore, G. B.; Thakre, A. D.; Jadhav, S.; Karuppayil, S. M. Terpenoids Inhibit Candida albicans Growth by Affecting Membrane Integrity and Arrest of Cell Cycle. Phytomedicine 2011, 18, 1181–1190. DOI: 10.1016/j.phymed.2011.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.