237
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of temperature on viscosity, stability, and microstructure of water-in-biodiesel microemulsions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 987-999 | Received 21 Apr 2021, Accepted 21 Sep 2021, Published online: 11 Oct 2021

References

  • Klemmer, H. F. M.; Harbauer, C.; Strey, R.; Grillo, I.; Sottmann, T. Formation Kinetics of Oil-Rich, Nonionic Microemulsions. Langmuir 2016, 32, 6360–6366. DOI: 10.1021/acs.langmuir.6b00738.
  • Malheiro, A. R.; Varanda, L. C.; Perez, J.; Villullas, H. M. The Aerosol OT + n-Butanol + n-Heptane + Water System: Phase Behavior, Structure Characterization, and Application to Pt70Fe30 Nanoparticle Synthesis. Langmuir 2007, 23, 11015–11020. DOI: 10.1021/la702146q.
  • Fanun, M. Microemulsions: Properties and Applications. Surfactant Science; CRC Press: Boca Raton, Florida, USA, 2008.
  • Handbook of Microemulsion Science and Technology, 1st ed.; Kumar, P., Mittal, K. L., Eds.; CRC Press: Boca Raton, Florida, USA, 1991. DOI: 10.1201/9780203752739..
  • Hodges, P. K. B. Hydraulic Fluids, 1st ed.; Butterworth-Heinemann: Oxford, United Kingdom, 1996. DOI: 10.1016/b978-034067652-3/50001-4.
  • Wanderley Neto, A. O.; da Silva, V. L.; Rodrigues, D. V.; Ribeiro, L. S.; Nunes da Silva, D. N.; de Oliveira Freitas, J. C. A Novel Oil-in-Water Microemulsion as a Cementation Flushing Fluid for Removing Non-Aqueous Filter Cake. J. Pet. Sci. Eng. 2020, 184, 106536. DOI: 10.1016/j.petrol.2019.106536.
  • Carvalho, R. T. R.; Oliveira, P. F.; Palermo, L. C. M.; Ferreira, A. A. G.; Mansur, C. R. E. Prospective Acid Microemulsions Development for Matrix Acidizing Petroleum Reservoirs. Fuel 2019, 238, 75–85. DOI: 10.1016/j.fuel.2018.10.003.
  • Shafiee Najafi, S. A.; Kamranfar, P.; Madani, M.; Shadadeh, M.; Jamialahmadi, M. Experimental and Theoretical Investigation of CTAB Microemulsion Viscosity in the Chemical Enhanced Oil Recovery Process. J. Mol. Liq. 2017, 232, 382–389. DOI: 10.1016/j.molliq.2017.02.092.
  • Kamranfar, P.; Jamialahmadi, M. Effect of Surfactant Micelle Shape Transition on the Microemulsion Viscosity and Its Application in Enhanced Oil Recovery Processes. J. Mol. Liq. 2014, 198, 286–291. DOI: 10.1016/j.molliq.2014.07.009.
  • Ferreira, G. F. D.; Souza, D. R. Q.; Lima, R.; Lobato, A. K. C. L.; Silva, A. C. M.; Santos, L. C. L. Novel Glycerin-Based Microemulsion Formulation for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2018, 167, 674–681. DOI: 10.1016/j.petrol.2018.04.048.
  • Mulqueen, P. Recent Advances in Agrochemical Formulation. Adv. Colloid Interface Sci. 2003, 106, 83–107. DOI: 10.1016/S0001-8686(03)00106-4.
  • Kumar, H.; Sarma, A. K.; Kumar, P. A Comprehensive Review on Preparation, Characterization, and Combustion Characteristics of Microemulsion Based Hybrid Biofuels. Renew. Sustain. Energy Rev. 2020, 117, 109498. DOI: 10.1016/j.rser.2019.109498.
  • Kibbey, T. C. G.; Chen, L.; Do, L. D.; Sabatini, D. A. Predicting the Temperature-Dependent Viscosity of Vegetable Oil/Diesel Reverse Microemulsion Fuels. Fuel 2014, 116, 432–437. DOI: 10.1016/j.fuel.2013.08.021.
  • Arpornpong, N.; Attaphong, C.; Charoensaeng, A.; Sabatini, D. A.; Khaodhiar, S. Ethanol-in-Palm Oil/Diesel Microemulsion-Based Biofuel: Phase Behavior, Viscosity, and Droplet Size. Fuel 2014, 132, 101–106. DOI: 10.1016/j.fuel.2014.04.068.
  • Piskunov, M.; Breitenbach, J.; Schmidt, J. B.; Strizhak, P.; Tropea, C.; Roisman, I. V. Secondary Atomization of Water-in-Oil Emulsion Drops Impinging on a Heated Surface in the Film Boiling Regime. Int. J. Heat Mass Transf. 2021, 165, 120672. DOI: 10.1016/j.ijheatmasstransfer.2020.120672.
  • Mardles, E. W. J. Viscosity of Suspensions and the Einstein Equation. Nature 1940, 145, 970–970. DOI: 10.1038/145970a0.
  • Gradzielski, M.; Hoffmann, H. Structural Investigations of Charged O/W Microemulsion Droplets. Adv. Colloid Interface Sci. 1992, 42, 149–173. DOI: 10.1016/0001-8686(92)80022-P.
  • Thomas, D. G. Transport Characteristics of Suspension: VIII. A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles. J. Colloid Sci. 1965, 20, 267–277. DOI: 10.1016/0095-8522(65)90016-4.
  • Pan, X.; Bhatia, S. R. Effect of Counterion Substitution on the Viscosity Anomaly in AOT Microemulsions. J. Colloid Interface Sci. 2008, 327, 152–156. DOI: 10.1016/j.jcis.2008.08.001.
  • Batra, U.; Russel, W. B.; Huang, J. S. Viscosity Anomaly and Charge Fluctuations in Dilute AOT Microemulsions with X < 20. Langmuir 1999, 15, 3718–3725. DOI: 10.1021/la9812727..
  • Huggins, M. L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. J. Am. Chem. Soc. 1942, 64, 2716–2718. DOI: 10.1021/ja01263a056.
  • Fanun, M. Conductivity, Viscosity, NMR and Diclofenac Solubilization Capacity Studies of Mixed Nonionic Surfactants Microemulsions. J. Mol. Liq. 2007, 135, 5–13. DOI: 10.1016/j.molliq.2006.09.003.
  • Fanun, M. A Study of the Properties of Mixed Nonionic Surfactants Microemulsions by NMR, SAXS, Viscosity and Conductivity. J. Mol. Liq. 2008, 142, 103–110. DOI: 10.1016/j.molliq.2008.05.006.
  • Djordjevic, L.; Primorac, M.; Stupar, M.; Krajisnik, D. Characterization of Caprylocaproyl Macrogolglycerides Based Microemulsion Drug Delivery Vehicles for an Amphiphilic Drug. Int. J. Pharm. 2004, 271, 11–19. DOI: 10.1016/j.ijpharm.2003.10.037.
  • Mehta, S. K.; Bala, K. Tween-Based Microemulsions: A Percolation View. Fluid Phase Equilib. 2000, 172, 197–209. DOI: 10.1016/S0378-3812(00)00378-2.
  • Mehta, S. K.; Dewan, R. K.; B, K. Percolation Phenomenon and the Study of Conductivity, Viscosity, and Ultrasonic Velocity in Microemulsions. Phys. Rev. E 1994, 50, 4.
  • Dreher, K. D.; Gogarty, W. B.; Sydansk, R. D. Rheological Properties of Fluids Composed of an Alkylbenzene Sulfonate, Decane, Cyclohexanol, and Water. J. Colloid Interface Sci. 1976, 57, 379–387. DOI: 10.1016/0021-9797(76)90212-5.
  • Liu, X.; Li, Q.; Gao, X.; Lu, C.; Dang, L.; Wang, Z. The Palm Oil-Based Microemulsion: Fabrication, Characterization and Rheological Properties. J. Mol. Liq. 2020, 302, 112527. DOI: 10.1016/j.molliq.2020.112527.
  • Chen, C. M.; Warr, G. G. Rheology of Ternary Microemulsions. J. Phys. Chem. 1992, 96, 9492–9497. DOI: 10.1021/j100202a077.
  • Mukherjee, P.; Padhan, S. K.; Dash, S.; Patel, S.; Mishra, B. K. Clouding Behaviour in Surfactant Systems. Adv. Colloid Interface Sci. 2011, 162, 59–79. DOI: 10.1016/j.cis.2010.12.005.
  • Mukherjee, P.; Sahu, S.; Padhan, S. K.; Dash, S.; Patel, S.; Mohapatra, P. K.; Mishra, B. K. Temperature Induced Emulsification and Demulsification of Pseudoternary Mixtures of Tween80–Butanol–Kerosene–Water System. Ind. Eng. Chem. Res. 2011, 50, 11889–11896. DOI: 10.1021/ie102480d.
  • Mukherjee, P.; Padhan, S. K.; Dash, S.; Patel, S.; Mohapatra, P. K.; Mishra, B. K. Effect of Temperature on Pseudoternary System Tween-80-Butanol-Hexane-Water. J. Colloid Interface Sci. 2011, 355, 157–163. DOI: 10.1016/j.jcis.2010.12.021.
  • Padhan, S. K.; Mukherjee, P.; Tiwari, A.; Patel, S.; Mishra, B. K. Temperature-Induced Phase Separation in Pseudoternary Mixtures of Triton X-100–Butanol–Kerosene–Water. Soft Mater 2016, 14, 107–116. DOI: 10.1080/1539445X.2016.1150854.
  • Kahlweit, M.; Strey, R.; Firman, P.; Haase, D. Phase Behavior of Ternary Systems: Water-Oil-Nonionic Surfactant as a near-Tricritical Phenomenon. Langmuir 1985, 1, 281–288. DOI: 10.1021/la00063a004.
  • Kahlweit, M.; Strey, R. Phase Behavior of Ternary Systems of the Type H2O-Oil-Nonionic Amphiphile (Microemulsions). Angew. Chem. Int. Ed. Engl. 1985, 24, 654–668. DOI: 10.1002/anie.198506541.
  • Kahlweit, M.; Strey, R.; Firman, P. Search for Tricritical Points in Ternary Systems: Water-Oil-Nonionic Amphiphile. J. Phys. Chem. 1986, 90, 671–677. DOI: 10.1021/j100276a038.
  • Schick, M. J. Micellization, Solubilization, and Microemulsions, Vols. 1 and 2, K. L. Mittal, Ed., Plenum, New York, 1977, 487; 945 Pp. J. Polym. Sci. B Polym. Lett. Ed. 1978, 16, 153–154. DOI: 10.1002/pol.1978.130160315.
  • Brock, D.; Koder, A.; Rabl, H.-P.; Touraud, D.; Kunz, W. Optimising the Biodiesel Production Process: Implementation of Glycerol Derivatives into Biofuel Formulations and Their Potential to Form Hydrofuels. Fuel 2020, 264, 116695. DOI: 10.1016/j.fuel.2019.116695.
  • Acharya, B.; Dash, S. Tuning Commercial Diesel to Microemulsified and Blended Form: Phase Behavior and Implications. J. Dispers. Sci. Technol. 2019, 40, 1159–1168. DOI: 10.1080/01932691.2018.1500479.
  • Najjar, R.; Heidari, S. Modified Diesel Prepared by Stabilization of Water as Nanodroplets in Diesel/Colza Oil Blend: Study of Phase Behavior and Affecting Parameters. Fuel 2018, 214, 497–504. DOI: 10.1016/j.fuel.2017.11.052.
  • Kayali, I.; Karaein, M.; Qamhieh, K.; Wadaah, S.; Ahmad, W.; Olsson, U. Phase Behavior of Bicontinuous and Water/Diesel Fuel Microemulsions Using Nonionic Surfactants Combined with Hydrophilic Alcohol Ethoxylates. J. Dispers. Sci. Technol. 2015, 36, 10–17. DOI: 10.1080/01932691.2014.886513.
  • Ashihmin, A.; Piskunov, M.; Roisman, I.; Yanovsky, V. Thermal Stability Control of the Water-in-Diesel Microemulsion Fuel Produced by Using a Nonionic Surfactant Combined with Aliphatic Alcohols. J. Dispers. Sci. Technol. 2020, 41, 771–778. DOI: 10.1080/01932691.2019.1634583.
  • Ashikhmin, A. E.; Piskunov, M. V.; Yanovskii, V. A. Hydrodynamic Regimes of Interaction between a Droplet of Water-in-Diesel Microemulsion and a Horizontal Heated Wall. Tech. Phys. Lett. 2019, 45, 544–548. DOI: 10.1134/S1063785019060038.
  • Ashikhmin, A. E.; Khomutov, N. A.; Piskunov, M. V.; Yanovsky, V. A. Secondary Atomization of a Biodiesel Micro-Emulsion Fuel Droplet Colliding with a Heated Wall. Appl. Sci. 2020, 10, 685. DOI: 10.3390/app10020685.
  • Ashikhmin, A.; Piskunov, M.; Yanovsky, V.; Yan, W.-M. Properties and Phase Behavior of Water-in-Diesel Microemulsion Fuels Stabilized by Nonionic Surfactants in Combination with Aliphatic Alcohol. Energy Fuels 2020, 34, 2135–2142. DOI: 10.1021/acs.energyfuels.9b03493.
  • Arkhipov, V. P.; Idiyatullin, Z. S.; Potapova, E. F.; Antzutkin, O. N.; Filippov, A. V. Micelles and Aggregates of Oxyethylated Isononylphenols and Their Extraction Properties near Cloud Point. J. Phys. Chem. B. 2014, 118, 5480–5487. DOI: 10.1021/jp502386e.
  • Arkhipov, V. P.; Potapova, E. F.; Antzutkin, O. N.; Filippov, A. V. Micelle Structure and Molecular Self-Diffusion in Isononylphenol Ethoxylate-Water Systems. Magn. Reson. Chem. 2013, 51, 424–430. DOI: 10.1002/mrc.3968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.