229
Views
0
CrossRef citations to date
0
Altmetric
Articles

Heterogeneous catalytic activation of peroxymonosulfate by Ag@Cu2O composite for Au3+ detection

, , , &
Pages 1085-1093 | Received 09 Apr 2021, Accepted 16 Oct 2021, Published online: 11 Nov 2021

References

  • Li, Z.; Kang, J.; Tang, Y.; Jin, C.; Luo, H.; Li, S.; Liu, J.; Wang, M.; Lv, C. The Enhanced P-Nitrophenol Degradation with Fe/Co3O4 Mesoporous Nanosheets via Peroxymonosulfate Activation and Its Mechanism Insight. J. Alloy. Compd. 2021, 858, 157739. DOI: 10.1016/j.jallcom.2020.157739.
  • Chen, C.; Liu, L.; Li, Y.; Zhou, L.; Lan, Y. Efficient Degradation of Roxarsone and Simultaneous in-Situ Adsorption of Secondary Inorganic Arsenic by a Combination of Co3O4-Y2O3 and Peroxymonosulfate. J. Hazard. Mater. 2021, 407, 124559. DOI: 10.1016/j.jhazmat.2020.124559.
  • Wang, K.; Huang, D.; Wang, W.; Li, Y.; Xu, L.; Li, J.; Zhu, Y.; Niu, J. Enhanced Decomposition of Long-chain Perfluorocarboxylic Acids (C9-C10) by Electrochemical Activation of Peroxymonosulfate in Aqueous Solution. Sci. Total Environ. 2021, 758, 143666 DOI: 10.1016/j.scitotenv.2020.143666.
  • Chen, L.; Ji, H.; Qi, J.; Huang, T.; Wang, C. C.; Liu, W. Degradation of Acetaminophen by Activated Peroxymonosulfate Using Co(OH)2 Hollow Microsphere Supported Titanate Nanotubes: Insights into Sulfate Radical Production Pathway through CoOH+ Activation. Chem. Eng. J. 2021, 406, 126877. DOI: 10.1016/j.cej.2020.126877.
  • Huang, G. X.; Wang, C. Y.; Yang, C. W.; Guo, P. C.; Yu, H. Q. Degradation of Bisphenol a by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe. Environ. Sci. Technol. 2017, 51, 12611–12618. DOI: 10.1021/acs.est.7b03007.
  • Zhou, X.; Luo, C.; Luo, M.; Wang, Q.; Wang, J.; Liao, Z.; Chen, Z.; Chen, Z. Understanding the Synergetic Effect from Foreign Metals in Bimetallic Oxides for PMS Activation: A Common Strategy to Increase the Stoichiometric Efficiency of Oxidants. Chem. Eng. J. 2020, 381, 122587. DOI: 10.1016/j.cej.2019.122587.
  • Nguyen, T. B.; Huang, C. P.; Doong, R. A.; Chen, C. W.; Dong, C.-D. CoO-3D Ordered Mesoporous Carbon Nitride (CoO@mpgCN) Composite as Peroxymonosulfate Activator for the Degradation of Sulfamethoxazole in Water. J. Hazard. Mater. 2021, 401, 123326 DOI: 10.1016/j.jhazmat.2020.123326.
  • Ren, W.; Gao, J.; Lei, C.; Xie, Y.; Cai, Y.; Ni, Q.; Yao, J. Recyclable Metal-Organic Framework/Cellulose Aerogels for Activating Peroxymonosulfate to Degrade Organic Pollutants. Chem. Eng. J. 2018, 349, 766–774. DOI: 10.1016/j.cej.2018.05.143.
  • Khan, J. A.; He, X.; Shah, N. S.; Khan, H. M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D. D. Kinetic and Mechanism Investigation on the Photochemical Degradation of Atrazine with Activated H2O2, S2O82− and HSO5−. Chem. Eng. J. 2014, 252, 393–403. DOI: 10.1016/j.cej.2014.04.104.
  • Du, J.; Wang, J.; Huang, W.; Deng, Y.; He, Y. Visible Light-Activatable Oxidase Mimic of 9-Mesityl-10-Methylacridinium Ion for Colorimetric Detection of Biothiols and Logic Operations. Anal. Chem. 2018, 90, 9959–9965. DOI: 10.1021/acs.analchem.8b02197.
  • Srivastava, S. K.; Medina-Sánchez, M.; Schmidt, O. G. Autonomously Propelled Microscavengers for Precious Metal Recovery. Chem. Commun. (Camb) 2017, 53, 8140–8143. DOI: 10.1039/c7cc02605f.
  • Deng, H.; Yan, S.; Huang, Y.; Lei, C.; Nie, Z. Design Strategies for Fluorescent Proteins/Mimics and Their Applications in Biosensing and Bioimaging. TRAC-Trends Anal. Chem. 2020, 122, 115757. DOI: 10.1016/j.trac.2019.115757.
  • Bai, L.; Chen, Y.; Liu, X.; Zhou, J.; Cao, J.; Hou, L.; Guo, S. Ultrasensitive Electrochemical Detection of mycobacterium tuberculosis IS6110 Fragment Using Gold Nanoparticles Decorated Fullerene Nanoparticles/Nitrogen-Doped Graphene Nanosheet as Signal Tags. Anal. Chim. Acta. 2019, 1080, 75–83. DOI: 10.1016/j.aca.2019.06.043.
  • Munro, C. J.; Knecht, M. R. Engendering Materials Directing Peptides with Non-Native Functionalities through Synthetic Sequence Modifications. J. Phys. Chem. C. 2018, 122, 26686–26697. DOI: 10.1021/acs.jpcc.8b07198.
  • Zhang, S.; Zhang, Z.; Wang, T.; Zhang, D.; Li, X.; Xue, Z.; Shan, D.; Lu, X. High-Throughput and Ultratrace Naked-Eye Colorimetric Detection of Au3+ Based on the Gold Amalgam-Stimulated Peroxidase Mimetic Activity in Aqueous Solutions. Chem. Commun. (Camb) 2017, 53, 5056–5058. DOI: 10.1039/c7cc01347g.
  • Li, Y.; Qiu, Y.; Zhang, J.; Zhu, X.; Zhu, B.; Liu, X.; Zhang, X.; Zhang, H. Naphthalimide Derived Fluorescent Probes with Turn-on Response for Au(3+) and the Application for Biological visualization. Biosens. Bioelectron. 2016, 83, 334–338. DOI: 10.1016/j.bios.2016.04.034.
  • Kumeria, T.; Santos, A.; Losic, D. Ultrasensitive Nanoporous Interferometric Sensor for Label-Free Detection of Gold(III) Ions. ACS Appl. Mater. Interfaces 2013, 5, 11783–11790. DOI: 10.1021/am403465x.
  • Wechakorn, K.; Prabpai, S.; Suksen, K.; Piyachaturawat, P.; Kongsaeree, P. Rhodol-Based Fluorescent Probe for Au3+ Detection and Its Application in Bioimaging. RSC Adv. 2016, 6, 24752–24755. DOI: 10.1039/C6RA02342H.
  • Deng, H. H.; Luo, B. Y.; He, S. B.; Chen, R. T.; Lin, Z.; Peng, H. P.; Xia, X. H.; Chen, W. Redox Recycling-Triggered Peroxidase-like Activity Enhancement of Bare Gold Nanoparticles for Ultrasensitive Colorimetric Detection of Rare-Earth Ce3+ Ion. Anal. Chem. 2019, 91, 4039–4046. DOI: 10.1021/acs.analchem.8b05552.
  • Kumar, S.; Parlett, C. M. A.; Isaacs, M. A.; Jowett, D. V.; Douthwaite, R. E.; Cockett, M. C. R.; Lee, A. F. Facile Synthesis of Hierarchical Cu2O Nanocubes as Visible Light Photocatalysts. Appl. Catal. B-Environ 2016, 189, 226–232. DOI: 10.1016/j.apcatb.2016.02.038.
  • Chen, L.; Liu, M.; Zhao, Y.; Kou, Q.; Wang, Y.; Liu, Y.; Zhang, Y.; Yang, J.; Jung, Y. M. Enhanced Catalyst Activity by Decorating of Au on Ag@Cu2O Nanoshell. Appl. Surf. Sci 2018, 435, 72–78. DOI: 10.1016/j.apsusc.2017.11.082.
  • Chen, L.; Sun, H.; Zhao, Y.; Zhang, Y.; Wang, Y.; Liu, Y.; Zhang, X.; Jiang, Y.; Hua, Z.; Yang, J. Plasmonic-Induced SERS Enhancement of Shell-Dependent Ag@Cu2O Core-Shell Nanoparticles. RSC Adv. 2017, 7, 16553–16560. DOI: 10.1039/C7RA01187C.
  • Wang, G. L.; Xu, X. F.; Qiu, L.; Dong, Y. M.; Li, Z. J.; Zhang, C. Dual Responsive Enzyme Mimicking Activity of AgX (X = Cl, Br, I) Nanoparticles and Its Application for Cancer Cell Detection. ACS Appl. Mater Interfaces 2014, 6, 6434–6442. DOI: 10.1021/am501830v.
  • Wang, G. L.; Xu, X. F.; Cao, L. H.; He, C. H.; Li, Z. J.; Zhang, C. Mercury(ii)-Stimulated Oxidase Mimetic Activity of Silver Nanoparticles as a Sensitive and Selective Mercury(ii) Sensor. RSC Adv. 2014, 4, 5867–5872. DOI: 10.1039/c3ra45226c.
  • Jiang, M.; Li, C.; Huang, K.; Wang, Y.; Liu, J. H.; Geng, Z.; Hou, X.; Shi, J.; Feng, S. Tuning W18O49/Cu2O{111} Interfaces for the Highly Selective CO2 Photocatalytic Conversion to CH4. ACS Appl. Mater. Interfaces 2020, 12, 35113–35119. DOI: 10.1021/acsami.0c11072.
  • Yang, A.; Li, S.; Wang, Y.; Wang, L.; Bao, X.; Yang, R. Synthesis of Ag@Cu2O Core-Shell Metal-Semiconductor Nanoparticles and Conversion to Ag@Cu Core-Shell Bimetallic Nanoparticles. Sci. China Technol. Sci. 2015, 58, 881–888. DOI: 10.1007/s11431-015-5797-0.
  • Gan, T.; Wang, Z.; Shi, Z.; Zheng, D.; Sun, J.; Liu, Y. Graphene Oxide Reinforced Core-Shell Structured Ag@Cu2O with Tunable Hierarchical Morphologies and Their Morphology-Dependent Electrocatalytic Properties for Bio-Sensing Applications. Biosens. Bioelectron. 2018, 112, 23–30. DOI: 10.1016/j.bios.2018.04.029.
  • Yuan, G.; Yu, S.; Jie, J.; Wang, C.; Li, Q.; Pang, H. Cu/Cu2O Nanostructures Derived from Copper Oxalate as High Performance Electrocatalyst for Glucose Oxidation. Chin. Chem. Lett. 2020, 31, 1941–1945. DOI: 10.1016/j.cclet.2019.12.034.
  • Xi, Q.; Gao, G.; Jin, M.; Zhang, Y.; Zhou, H.; Wu, C.; Zhao, Y.; Wang, L.; Guo, P.; Xu, J. Design of Graphitic Carbon Nitride Supported Ag-Cu2O Composites with Hierarchical Structures for Enhanced Photocatalytic Properties. Appl. Surf. Sci. 2019, 471, 714–725. DOI: 10.1016/j.apsusc.2018.12.033.
  • Ghose, S.; Singh, S.; Bhattacharya, T. S. Charge Transfer-Mediated Blue Luminescence in Plasmonic Ag-Cu2O Quantum Nanoheterostructures. ACS Appl. Mater. Interfaces 2020, 12, 7727–7735. DOI: 10.1021/acsami.9b19626.
  • Chen, L.; Guo, S.; Dong, L.; Zhang, F.; Gao, R.; Liu, Y.; Wang, Y.; Zhang, Y. SERS Effect on the Presence and Absence of rGO for Ag@Cu2O Core-Shell. Mater. Sci. Semicond. Process 2019, 91, 290–295. DOI: 10.1016/j.mssp.2018.11.038.
  • Zhou, T.; Zang, Z.; Wei, J.; Zheng, J.; Hao, J.; Ling, F.; Tang, X.; Fang, L.; Zhou, M. Efficient Charge Carrier Separation and Excellent Visible Light Photoresponse in Cu2O Nanowires. Nano Energy 2018, 50, 118–125. DOI: 10.1016/j.nanoen.2018.05.028.
  • Gao, Y.; Zhu, Y.; Lyu, L.; Zeng, Q.; Xing, X.; Hu, C. Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation. Environ. Sci. Technol. 2018, 52, 14371–14380. DOI: 10.1021/acs.est.8b05246.
  • Shao, P.; Yu, S.; Duan, X.; Yang, L.; Shi, H.; Ding, L.; Tian, J.; Yang, L.; Luo, X.; Wang, S. Potential Difference Driving Electron Transfer via Defective Carbon Nanotubes toward Selective Oxidation of Organic Micropollutants. Environ. Sci. Technol. 2020, 54, 8464–8472. DOI: 10.1021/acs.est.0c02645.
  • Liang, P.; Zhang, C.; Duan, X.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S. An Insight into Metal Organic Framework Derived N-Doped Graphene for the Oxidative Degradation of Persistent Contaminants: formation Mechanism and Generation of Singlet Oxygen from Peroxymonosulfate. Environ. Sci: Nano 2017, 4, 315–324. DOI: 10.1039/C6EN00633G.
  • Yao, Y.; Chen, H.; Qin, J.; Wu, G.; Lian, C.; Zhang, J.; Wang, S. Iron Encapsulated in Boron and Nitrogen Codoped Carbon Nanotubes as Synergistic Catalysts for Fenton-like Reaction. Water Res. 2016, 101, 281–291. DOI: 10.1016/j.watres.2016.05.065.
  • Zhu, M.; Zhang, L.; Liu, S.; Wang, D.; Qin, Y.; Chen, Y.; Dai, W.; Wang, Y.; Xing, Q.; Zou, J. Degradation of 4-Nitrophenol by Electrocatalysis and Advanced Oxidation Processes Using Co3O4@C Anode Coupled with Simultaneous CO2 Reduction via SnO2/CC Cathode. Chin. Chem. Lett. 2020, 31, 1961–1965. DOI: 10.1016/j.cclet.2020.01.017.
  • Shao, P.; Tian, J.; Yang, F.; Duan, X.; Gao, S.; Shi, W.; Luo, X.; Cui, F.; Luo, S.; Wang, S. Identification and Regulation of Active Sites on Nanodiamonds: establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Adv. Funct. Mater. 2018, 28, 1705295. DOI: 10.1002/adfm.201705295.
  • Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials. Adv. Mater. 2009, 21, 803–807. DOI: 10.1002/adma.200800596.
  • Lupan, O.; Ababii, N.; Mishra, A. K.; Gronenberg, O.; Vahl, A.; Schürmann, U.; Duppel, V.; Krüger, H.; Chow, L.; Kienle, L.; et al. Single CuO/Cu2O/Cu Microwire Covered by a Nanowire Network as a Gas Sensor for the Detection of Battery Hazards. ACS Appl. Mater. Interfaces 2020, 12, 42248–42263. DOI: 10.1021/acsami.0c09879.
  • Gao, J.; Ren, D.; Guo, X.; Zakeeruddin, S. M.; Grätzel, M. Sequential Catalysis Enables Enhanced C-C Coupling towards Multi-Carbon Alkenes and Alcohols in Carbon Dioxide Reduction: A Study on Bifunctional Cu/Au Electrocatalysts. Faraday Discuss. 2019, 215, 282–296. DOI: 10.1039/c8fd00219c.
  • Qi, C.; Zheng, Y.; Lin, H.; Su, H.; Sun, X.; Sun, L. CO Oxidation over Gold Catalysts Supported on CuO/Cu2O Both in O2-Rich and H2-Rich Streams: Necessity of Copper Oxide. Appl. Catal. B-Environ. 2019, 253, 160–169. DOI: 10.1016/j.apcatb.2019.03.081.
  • Hu, G. W.; Hu, C. X.; Zhu, Z. Y.; Zhang, L.; Wang, Q.; Zhang, H. Construction of Au/CuO/Co3O4 Tricomponent Heterojunction Nanotubes for Enhanced Photocatalytic Oxygen Evolution under Visible Light Irradiation. ACS Sustainable Chem. Eng. 2018, 6, 8801–8808. DOI: 10.1021/acssuschemeng.8b01153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.