184
Views
0
CrossRef citations to date
0
Altmetric
Articles

High-efficient removal of Cu(II) using biochar/ZnS composite: optimized by response surface methodology

, , , , , , & show all
Pages 1159-1169 | Received 27 May 2021, Accepted 12 Nov 2021, Published online: 02 Dec 2021

References

  • Batool, S.; Idrees, M.; Hussain, Q.; Kong, J. Adsorption of Copper (II) by Using Derived Farmyard and Poultry Manure Biochars: Efficiency and Mechanism. Chem. Phys. Lett. 2017, 689, 190–198. DOI: 10.1016/j.cplett.2017.10.016.
  • Eshak, E. S.; Iso, H.; Yamagishi, K.; Maruyama, K.; Umesawa, M.; Tamakoshi, A. Associations between Copper and Zinc Intakes from Diet and Mortality from Cardiovascular Disease in a Large Population-Based Prospective Cohort Study. J. Nutr. Biochem. 2018, 56, 126–132. DOI: 10.1016/j.jnutbio.2018.02.008.
  • Zhang, H.; Omer, A. M.; Hu, Z.; Yang, L.-Y.; Ji, C.; Ouyang, X.-K. Fabrication of Magnetic Bentonite/Carboxymethyl Chitosan/Sodium Alginate Hydrogel Beads for Cu (II) Adsorption. Int. J. Biol. Macromol. 2019, 135, 490–500. DOI: 10.1016/j.ijbiomac.2019.05.185.
  • Xie, Y.; Yuan, X.; Wu, Z.; Zeng, G.; Jiang, L.; Peng, X.; Li, H. Adsorption Behavior and Mechanism of Mg/Fe Layered Double Hydroxide with Fe3O4-Carbon Spheres on the Removal of Pb(II) and Cu(II). J. Colloid Interface Sci. 2019, 536, 440–455. DOI: 10.1016/j.jcis.2018.10.066.
  • Cao, Y.; Qian, X.; Zhang, Y.; Qu, G.; Xia, T.; Guo, X.; Jia, H.; Wang, T. Decomplexation of EDTA-Chelated Copper and Removal of Copper Ions by Non-Thermal Plasma Oxidation/Alkaline Precipitation. Chem. Eng. J. 2019, 362, 487–496. DOI: 10.1016/j.cej.2019.01.061.
  • Zahed, H. S. S.; Khanlari, S.; Mohammadi, T. Hydrous Metal Oxide Incorporated Polyacrylonitrile-Based Nanocomposite Membranes for Cu(II) Ions Removal. Sep. Purif. Technol. 2019, 213, 151–161. DOI: 10.1016/j.seppur.2018.12.027.
  • Bazarin, G.; Módenes, A. N.; Vieira, M. G. A.; Borba, C. E.; Espinoza-Quiñones, F. R.; Scariotto, M. C. Tilapia Scales: Characterization and Study of Cu(II) Removal by Ion Exchange with Ca(II). Sep. Sci. Technol. 2020, 55, 186–198. DOI: 10.1080/01496395.2019.1577260.
  • O'Connor, D.; Peng, T.; Zhang, J.; Tsang, D. C. W.; Alessi, D. S.; Shen, Z.; Bolan, N. S.; Hou, D. Biochar Application for the Remediation of Heavy Metal Polluted Land: A Review of in Situ Field Trials. Sci. Total Environ. 2018, 619–620, 815–826. DOI: 10.1016/j.scitotenv.2017.11.132.
  • Luo, M.; Huang, C.; Chen, F.; Chen, C.; Li, H. Removal of Aqueous Cr(VI) Using Magnetic-Gelatin Supported on Brassica-Straw Biochar. J. Dispersion Sci. Technol. 2021, 42, 1710–1722. DOI: 10.1080/01932691.2020.1785889.
  • Tang, J.; Lv, H.; Gong, Y.; Huang, Y. Preparation and Characterization of a Novel Graphene/Biochar Composite for Aqueous Phenanthrene and Mercury Removal. Bioresour. Technol. 2015, 196, 355–363. DOI: 10.1016/j.biortech.2015.07.047.
  • Rajapaksha, A. U.; Chen, S. S.; Tsang, D. C. W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N. S.; Ok, Y. S. Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification. Chemosphere 2016, 148, 276–291. DOI: 10.1016/j.chemosphere.2016.01.043.
  • Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of Acid- and Alkali-Modified Biochar for Removal of Methylene Blue Pigment. ACS Omega 2020, 5, 30906–30922. DOI: 10.1021/acsomega.0c03688.
  • Huff, M. D.; Lee, J. W. Biochar-Surface Oxygenation with Hydrogen Peroxide. J. Environ. Manage. 2016, 165, 17–21. DOI: 10.1016/j.jenvman.2015.08.046.
  • Van Vinh, N.; Zafar, M.; Behera, S. K.; Park, H.-S. Arsenic(III) Removal from Aqueous Solution by Raw and Zinc-Loaded Pine Cone Biochar: Equilibrium, Kinetics, and Thermodynamics Studies. Int. J. Environ. Sci. Technol. 2015, 12, 1283–1294. DOI: 10.1007/s13762-014-0507-1.
  • Gan, C.; Liu, Y.; Tan, X.; Wang, S.; Zeng, G.; Zheng, B.; Li, T.; Jiang, Z.; Liu, W. Effect of Porous Zinc–Biochar Nanocomposites on Cr(VI) Adsorption from Aqueous Solution. RSC Adv. 2015, 5, 35107–35115. DOI: 10.1039/C5RA04416B.
  • Pala, I. R.; Brock, S. L. ZnS Nanoparticle Gels for Remediation of Pb2+ and Hg2+ Polluted Water. ACS Appl Mater Interfaces 2012, 4, 2160–2167. DOI: 10.1021/am3001538.
  • Piquette, A.; Cannon, C.; Apblett, A. W. Remediation of Arsenic and Lead with Nanocrystalline Zinc Sulfide. Nanotechnology 2012, 23, 294014. DOI: 10.1088/0957-4484/23/29/294014.
  • Qu, Z.; Yan, L.; Li, L.; Xu, J.; Liu, M.; Li, Z.; Yan, N. Ultraeffective ZnS Nanocrystals Sorbent for Mercury(II) Removal Based on Size-Dependent Cation Exchange. ACS Appl. Mater. Interfaces 2014, 6, 18026–18032. DOI: 10.1021/am504896w.
  • Bhunia, P.; Ghangrekar, M. M. Statistical Modeling and Optimization of Biomass Granulation and COD Removal in UASB Reactors Treating Low Strength Wastewaters. Bioresour. Technol. 2008, 99, 4229–4238. DOI: 10.1016/j.biortech.2007.08.075.
  • Yılmaz, S.; Zengin, A.; Akbulut, Y.; Şahan, T. Magnetic Nanoparticles Coated with Aminated Polymer Brush as a Novel Material for Effective Removal of Pb(II) Ions from Aqueous Environments. Environ. Sci. Pollut. Res. Int. 2019, 26, 20454–20468. DOI: 10.1007/s11356-019-05360-2.
  • Yan, L.; Kong, L.; Qu, Z.; Li, L.; Shen, G. Magnetic Biochar Decorated with ZnS Nanocrytals for Pb(II) Removal. ACS Sustainable Chem. Eng. 2015, 3, 125–132. DOI: 10.1021/sc500619r.
  • Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; dos Santos, W. N. L.. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Yılmaz, Ş.; Ecer, Ü.; Şahan, T. Modelling and Optimization of as(III) Adsorption onto Thiol-Functionalized Bentonite from Aqueous Solutions Using Response Surface Methodology Approach. Chemistryselect 2018, 3, 9326–9335. DOI: 10.1002/slct.201801037.
  • Ecer, Ü.; Yılmaz, Ş.; Şahan, T. Highly Efficient Cd(II) Adsorption Using Mercapto-Modified Bentonite as a Novel Adsorbent: An Experimental Design Application Based on Response Surface Methodology for Optimization. Water Sci. Technol. 2018, 78, 1348–1360. DOI: 10.2166/wst.2018.400.
  • Jung, K.; Lee, S. Y.; Lee, Y. J. Hydrothermal Synthesis of Hierarchically Structured Birnessite-Type MnO2/Biochar Composites for the Adsorptive Removal of Cu(II) from Aqueous Media. Bioresour. Technol. 2018, 260, 204–212. DOI: 10.1016/j.biortech.2018.03.125.
  • Zhou, Q.; Liao, B.; Lin, L.; Qiu, W.; Song, Z. Adsorption of Cu(II) and Cd(II) from Aqueous Solutions by Ferromanganese Binary Oxide-Biochar Composites. Sci. Total Environ. 2018, 615, 115–122. DOI: 10.1016/j.scitotenv.2017.09.220.
  • Liu, J.; Yang, X.; Liu, H.; Cheng, W.; Bao, Y. Modification of Calcium-Rich Biochar by Loading Si/Mn Binary Oxide after NaOH Activation and Its Adsorption Mechanisms for Removal of Cu(II) from Aqueous Solution. Colloids Surf., A. 2020, 601, 124960. DOI: 10.1016/j.colsurfa.2020.124960.
  • Li, C.; Zhang, L.; Gao, Y.; Li, A. Facile Synthesis of Nano ZnO/ZnS Modified Biochar by Directly Pyrolyzing of Zinc Contaminated Corn Stover for Pb(II), Cu(II) and Cr(VI) Removals. Waste Manag. 2018, 79, 625–637. DOI: 10.1016/j.wasman.2018.08.035.
  • Yu, C.; Wang, M.; Dong, X.; Shi, Z.; Zhang, X.; Lin, Q. Removal of Cu (II) from Aqueous Solution Using Fe3O4–Alginate Modified Biochar Microspheres. RSC Adv. 2017, 7, 53135–53144. DOI: 10.1039/C7RA10185F.
  • Song, Z.; Lian, F.; Yu, Z.; Zhu, L.; Xing, B.; Qiu, W. Synthesis and Characterization of a Novel MnOx-Loaded Biochar and Its Adsorption Properties for Cu2+ in Aqueous Solution. Chem. Eng. J. 2014, 242, 36–42. DOI: 10.1016/j.cej.2013.12.061.
  • Dai, Z.; Meng, J.; Muhammad, N.; Liu, X.; Wang, H.; He, Y.; Brookes, P. C.; Xu, J. The Potential Feasibility for Soil Improvement, Based on the Properties of Biochars Pyrolyzed from Different Feedstocks. J. Soils Sediments 2013, 13, 989–1000. DOI: 10.1007/s11368-013-0698-y.
  • Virieux, H.; Troedec, M. L.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description. J. Am. Chem. Soc. 2012, 134, 19701–19708. DOI: 10.1021/ja307124m.
  • Barreca, D.; Gasparotto, A.; Maragno, C.; Tondello, E.; Spalding, T. R. Analysis of Nanocrystalline ZnS Thin Films by XPS. Surf. Sci. Spectra 2002, 9, 54–61. DOI: 10.1116/11.20030117.
  • Wang, Z.; Yu, N.; Li, X.; Yu, W.; Han, S.; Ren, X.; Yin, S.; Li, M.; Chen, Z. Galvanic Exchange-Induced Growth of Au Nanocrystals on CuS Nanoplates for Imaging Guided Photothermal Ablation of Tumors. Chem. Eng. J. 2020, 381, 122613. DOI: 10.1016/j.cej.2019.122613.
  • Laajalehto, K.; Kartio, I.; Nowak, P. XPS Study of Clean Metal Sulfide Surfaces. Appl. Surf. Sci. 1994, 81, 11–15. DOI: 10.1016/0169-4332(94)90080-9.
  • Ecer, Ü.; Şahan, T. A Response Surface Approach for Optimization of Pb(II) Biosorption Conditions from Aqueous Environment with Polyporus Squamosus Fungi as a New Biosorbent and Kinetic, Equilibrium and Thermodynamic Studies. Desalin. Water Treat. 2008, 102, 229–240. DOI: 10.5004/dwt.2018.21871.
  • Ecer, Ü.; Zengin, A.; Şahan, T. Magnetic Clay\Zeolitic Imidazole Framework Nanocomposite (ZIF-8@Fe3O4@BNT) for Reactive Orange 16 Removal from Liquid Media. Colloids Surf., A. 2021, 630, 127558. DOI: 10.1016/j.colsurfa.2021.127558.
  • Silva, V.; Rouboa, A. Combining a 2-D Multiphase CFD Model with a Response Surface Methodology to Optimize the Gasification of Portuguese Biomasses. Energy Convers. Manage. 2015, 99, 28–40. DOI: 10.1016/j.enconman.2015.03.020.
  • Wang, X.-S.; Qin, Y. Equilibrium Sorption Isotherms for of Cu2+ on Rice Bran. Process Biochem. 2005, 40, 677–680. DOI: 10.1016/j.procbio.2004.01.043.
  • Marques, P. A.; Pinheiro, H. M.; Teixeira, J.; Rosa, M. F. Removal Efficiency of Cu2+, Cd2+ and Pb2+ by Waste Brewery Biomass: pH and Cation Association Effects. Desalination 1999, 124, 137–144. DOI: 10.1016/S0011-9164(99)00098-3.
  • Lopez-Ramon, M. V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the Characterization of Acidic and Basic Surface Sites on Carbons by Various Techniques. Carbon 1999, 37, 1215–1221. DOI: 10.1016/S0008-6223(98)00317-0.
  • Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F.; Wei, Y. Preparation of Amine Functionalized Carbon Nanotubes via a Bioinspired Strategy and Their Application in Cu2+ Removal. Appl. Surf. Sci. 2015, 343, 19–27. DOI: 10.1016/j.apsusc.2015.03.081.
  • Monazam, E. R.; Shadle, L. J.; Miller, D. C.; Pennline, H. W.; Fauth, D. J.; Hoffman, J. S.; Gray, M. L. Equilibrium and Kinetics Analysis of Carbon Dioxide Capture Using Immobilized Amine on a Mesoporous Silica. AIChE J. 2013, 59, 923–935. DOI: 10.1002/aic.13870.
  • Amin, N. K. Removal of Direct Blue-106 Dye from Aqueous Solution Using New Activated Carbons Developed from Pomegranate Peel: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2009, 165, 52–62. DOI: 10.1016/j.jhazmat.2008.09.067.
  • Ge, Y.; Cui, X.; Kong, Y.; Li, Z.; He, Y.; Zhou, Q. Porous Geopolymeric Spheres for Removal of Cu(II) from Aqueous Solution: Synthesis and Evaluation. J. Hazard. Mater. 2015, 283, 244–251. DOI: 10.1016/j.jhazmat.2014.09.038.
  • Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. Removal of Pb(II), Cu(II), and Cd(II) from Aqueous Solutions by Biochar Derived from KMnO4 Treated Hickory Wood. Bioresour. Technol. 2015, 197, 356–362. DOI: 10.1016/j.biortech.2015.08.132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.