258
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of nanoparticle modified polyacrylamide on wax deposition, crystallization and flow behavior of light and heavy crude oils

, &
Pages 1226-1236 | Received 16 Aug 2021, Accepted 21 Nov 2021, Published online: 07 Dec 2021

References

  • Yang, F.; Li, C.; Li, C.; Wang, D. Scaling of Structural Characteristics of Gelled Model Waxy Oils. Energy & Fuels 2013, 27, 3718–3724.
  • Wardhaugh, L. T.; Boger, D. V. Flow Characteristics of Waxy Crude Oils: Application to Pipeline Design. AIChE. J. 1991, 37, 871–885.
  • Li, L.; Xu, J.; Tinsley, J.; Adamson, D. H.; Pethica, B. A.; Huang, J. S.; Prud’homme, R. K.; Guo, X. Improvement of Oil Flowability by Assembly of Comb-Type Copolymers with Paraffin and Asphaltene. AIChE. J. 2012, 58, 2254–2261.
  • Al-Sabagh, A. M.; El-Din, M. N.; Morsi, R. E.; Elsabee, M. Z. Styrene-Maleic Anhydride Copolymer Esters as Flow Improvers of Waxy Crude Oil. J. Petrol. Sci. Eng. 2009, 65, 139–146.
  • Kuzmić, A. E.; Radošević, M.; Bogdanić, G.; Srića, V.; Vuković, R. Studies on the Influence of Long Chain Acrylic Esters Polymers with Polar Monomers as Crude Oil Flow Improver Additives. Fuel 2008, 87, 2943–2950.
  • Chanda, D.; Sarmah, A.; Borthakur, A.; Rao, K. V.; Subrahmanyam, B.; Das, H. C. Combined Effect of Asphaltenes and Flow Improvers on the Rheological Behaviour of Indian Waxy Crude Oil. Fuel 1998, 77, 1163–1167.
  • Song, X.; Yin, H.; Feng, Y.; Zhang, S.; Wang, Y. Effect of SiO2 Nanoparticles on Wax Crystallization and Flow Behavior of Model Crude Oil. Industr. Eng. Chem. Res. 2016, 55, 6563–6568.
  • Yang, F.; Zhao, Y.; Sjöblom, J.; Li, C.; Paso, K. G. Polymeric Wax Inhibitors and Pour Point Depressants for Waxy Crude Oils: A Critical Review. J. Dispersion Sci. Technol. 2015, 36, 213–225.
  • Farag, R. K. Poly (Cinnamoyloxy Ethyl Methacrylate-co-Octadecyl Acrylate) as Flow Improver for Egyptian Waxy Crude Oils. Int. J. Polym. Mater. 2008, 57, 189–202.
  • Xu, J.; Xing, S.; Qian, H.; Chen, S.; Wei, X.; Zhang, R.; Li, L.; Guo, X. Effect of Polar/Nonpolar Groups in Comb-Type Copolymers on Cold Flowability and Paraffin Crystallization of Waxy Oils. Fuel 2013, 103, 600–605.
  • Machado, A. L.; Lucas, E. F. Poly (Ethylene-co-Vinyl Acetate)(EVA) Copolymers as Modifiers of Oil Wax Crystallization. Pet. Sci. Technol. 1999, 17, 1029–1041.
  • Meneghetti, P.; Qutubuddin, S. Synthesis, Thermal Properties and Applications of Polymer-Clay Nanocomposites. Thermochim. Acta 2006, 442, 74–77.
  • Wang, F.; Zhang, D.; Ding, Y.; Zhang, L.; Yang, M.; Jiang, B.; Zhang, S.; Liu, A. M.; Zhi, G.; Huo, S. L. The Effect of Nanohybrid Materials on the Pour-Point and Viscosity Depressing of Waxy Crude Oil. Chin. Sci. Bull. 2011, 56, 14–17.
  • Feyisitan, F.; NandlalShah, S. Emergence of Nanotechnology in the Oil and Gas Industry: Emphasis on the Application of Silica Nanoparticles. Petroleum 2017, 3, 391–405.
  • Ma, J. Z.; Hu, J.; Zhang, Z. J. Polyacrylate/Silica Nanocomposite Materials Prepared by Sol–Gel Process. Eur. Polym. J. 2007, 43, 4169–4177.
  • Percy, M. J.; Amalvy, J. I.; Randall, D. P.; Armes, S. P.; Greaves, S. J.; Watts, J. F. Synthesis of Vinyl Polymer − Silica Colloidal Nanocomposites Prepared Using Commercial Alcoholic Silica Sols. Langmuir 2004, 20, 2184–2190.
  • Prakash, S.; Malhotra, M.; Shao, W.; Tomaro-Duchesneau, C.; Abbasi, S. Polymeric Nanohybrids and Functionalized Carbon Nanotubes as Drug Delivery Carriers for Cancer Therapy. Adv. Drug Deliv. Rev. 2011, 63, 1340–1351.
  • Lim, Z. H.; Al Salim, H. S.; Ridzuan, N.; Nguele, R.; Sasaki, K. Effect of Surfactants and Their Blend with Silica Nanoparticles on Wax Deposition in a Malaysian Crude Oil. Pet. Sci. 2018, 15, 577–590.
  • Wang, C.; Zhang, M.; Wang, W.; Ma, Q.; Zhang, S.; Huang, H.; Peng, Z.; Yao, H.; Li, Q.; Ding, Y.; Gong, J. Experimental Study of the Effects of a Nanocomposite Pour Point Depressant on Wax Deposition. Energy & Fuels 2020, 34, 12239–12246.
  • Yang, F.; Paso, K.; Norrman, J.; Li, C.; Oschmann, H.; SjöBlom, J. Hydrophilic Nanoparticles Facilitate Wax Inhibition. Energy & Fuels 2015, 29, 1368–1374.
  • Yao, B.; Li, C.; Yang, F.; Sjöblom, J.; Zhang, Y.; Norrman, J.; Paso, K.; Xiao, Z. Organically Modified Nano-Clay Facilitates Pour Point Depressing Activity of Polyoctadecylacrylate. Fuel 2016, 166, 96–105.
  • Yao, B.; Li, C.; Yang, F.; Zhang, Y.; Sun, X. Z. G. Structural Properties of Gelled Changqing Waxy Crude Oil Benefitted with Nanocomposite Pour Point Depressant. Fuel 2016, 184, 544–554.
  • Zhao, Z.; Yan, S.; Lian, J.; Chang, W.; Xue, Y.; He, Z.; Bi, D.; Han, S. A New Kind of Nanohybrid Poly (Tetradecyl Methyl-Acrylate)-Graphene Oxide as Pour Point Depressant to Evaluate the Cold Flow Properties and Exhaust Gas Emissions of Diesel Fuels. Fuel 2018, 216, 818–825.
  • Sharma, R.; Mahto, V.; Vuthaluru, H. Synthesis of PMMA/Modified Graphene Oxide Nanocomposite Pour Point Depressant and Its Effect on the Flow Properties of Indian Waxy Crude Oil. Fuel 2019, 235, 1245–1259.
  • Norrman, J.; Solberg, A.; Sjoblom, J.; Paso, K. Nanoparticles for Waxy Crudes: effect of Polymer Coverage and the Effect on Wax Crystallization. Energy & Fuels 2016, 30, 5108–5114.
  • Jing, G.; Sun, Z.; Tu, Z.; Bian, X.; Liang, Y. Influence of Different Vinyl Acetate Contents on the Properties of the Copolymer of Ethylene and Vinyl Acetate/Modified nano-SiO2 Composite Pour-Point Depressant. Energy & Fuels 2017, 31, 5854–5859.
  • Huang, H.; Wang, W.; Peng, Z.; Li, K.; Gan, D.; Zhang, S.; Ding, Y.; Wu, H.; Gong, J. The Effect of Cooling Processes on the Yield Stress of Waxy Model Oil with Nanocomposite Pour Point Depressant. J. Petrol. Sci. Eng. 2019, 175, 828–837.
  • He, C.; Ding, Y.; Chen, J.; Wang, F.; Gao, C.; Zhang, S.; Yang, M. Influence of the Nano-Hybrid Pour Point Depressant on Flow Properties of Waxy Crude Oil. Fuel 2016, 167, 40–48.
  • Marie, E.; Chevalier, Y.; Eydox, F.; Germanaud, L.; Flores, P. Control of n-Alkanes Crystallization by Ethylene–Vinyl Acetate Copolymers. J. Colloid Interface Sci. 2005, 290, 406–418.
  • Holder, G. A.; Winkler, J. Crystal-Growth Poisoning of n-Paraffin Wax by Polymeric Additives and Its Relevance to Polymer Crystallization Mechanisms. Nature 1965, 207, 719–721.
  • Guo, X.; Pethica, B. A.; Huang, J. S.; Prud’Homme, R. K. Crystallization of Long-Chain n-Paraffins from Solutions and Melts as Observed by Differential Scanning Calorimetry. Macromolecules 2004, 37, 5638–5645.
  • Binks, B. P.; Fletcher, P. D.; Roberts, N. A.; Dunkerley, J.; Greenfield, H.; Mastrangelo, A.; Trickett, K. How Polymer Additives Reduce the Pour Point of Hydrocarbon Solvents Containing Wax Crystals. PCCP. 2015, 17, 4107–4117.
  • Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, O.; Gong, J. The Influence of Nanocomposite Pour Point Depressant on the Crystallization of Waxy Oil. Fuel 2018, 221, 257–268.
  • Zh, S.; Jing, G.; Tu, Z. Effect of Modified Nano-Silica/EVA on Flow Behavior and Wax Crystallization of Model Oils with Different Wax Contents. J. Dispersion Sci. Technol. 2018, 39, 71–76.
  • Tu, Z.; Jing, G.; Sun, Z. H.; Zh, Z.; Li, W. Effect of Nanocomposite of Attapulgite/EVA on Flow Behavior and Wax Crystallization of Model Oil. J. Dispersion Sci. Technol. 2018, 39, 1280–1284.
  • Yu, H.; Zh, S.; Jing, g.; Zh, Z.; Liu, Y.; Guo, K. Effect of a Magnetic Nanocomposite Pour Point Depressant on the Structural Properties of Daqing Waxy Crude Oil. Energy & Fuels 2019, 33, 6069–6075.
  • Lei, Y.; Han, S.; Zhang, J. Effect of the Dispersion Degree of Asphaltene on Wax Deposition in Crude Oil under Static Conditions. Fuel Process. Technol. 2016, 146, 20–28.
  • Venkatesan, R.; Östlund, J. A.; Chawla, H.; Wattana, P.; Nydén, M.; Fogler, H. S. The Effect of Asphaltenes on the Gelation of Waxy Oils. Energy & Fuels 2003, 17, 1630–1640.
  • Tinsley, J. F.; Jahnke, J. P.; Dettman, H. D.; Prud’home, R. K. Waxy Gels with Asphaltenes 1: Characterization of Precipitation, Gelation, Yield Stress, and Morphology. Energy & Fuels 2009, 23, 2056–2064.
  • Li, C.; Zhu, H.; Yang, F.; Liu, H.; Wang, F.; Sun, G.; Yao, B. Effect of Asphaltene Polarity on Wax Precipitation and Deposition Characteristics of Waxy Oils. Energy & Fuels 2019, 8, 7225–7233.
  • Jing, G.; Ye, P.; Zhang, Y. The Action Mechanism of Wax Inhibitors (WI) on Pour Point and Viscosity of Mixed Waxy Oil. Pet. Chem. 2017, 57, 293–298.
  • Pu, W.; Du, D.; Liu, R.; Gu, J.; Li, K.; Zhang, Y.; Liu, P. Synthesis and Characterization of Hyperbranched Associative Polyacrylamide. RSC Adv. 2016, 6, 39522–39529.
  • Wever, D. A.; Picchioni, F.; Broekhuis, A. A. Polymers for Enhanced Oil Recovery: A Paradigm for Structure–Property Relationship in Aqueous Solution. Prog. Polym. Sci. 2011, 36, 1558–1628.
  • Thomas, A.; Gaillard, N.; Favero, C. Some Key Features to Consider When Studying Acrylamide-Based Polymers for Chemical Enhanced Oil Recovery. Oil Gas Sc. Technol.–Revue d’IFP Energies Nouvelles 2012, 67, 887–902.
  • Li, H.; Zhang, J.; Xu, Q.; Ch, H.; Sun, Y.; Zhuang, Y.; Sh, H.; Changchun, W. Influence of Asphaltene on Wax Deposition: Deposition Inhibition and Sloughing. Fuel 2020, 266, 1–8.
  • Ruwoldt, J.; Humborstad, G.; Simon, S.; Oschmann, H.; Sjöblom, J. Inhibitor-Wax Interactions and PPD Effect on Wax Crystallization: New Approaches for GC/MS and NMR, and Comparison with DSC, CPM, and Rheometry. J. Petrol. Sci. Eng. 2019, 117, 53–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.