174
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis of Fe-MOFs/h-CeO2 hollow micro-spheres and their highly efficient photocatalytic degradation of RhB

, , & ORCID Icon
Pages 1479-1489 | Received 07 Jun 2021, Accepted 16 Dec 2021, Published online: 06 Jan 2022

References

  • Liang, Q.; Ploychompoo, S.; Chen, J.; Zhou, T.; Luo, H. Simultaneous Cr(VI) Reduction and Bisphenol a Degradation by a 3D Z-Scheme Bi2S3-BiVO4 Graphene Aerogel Under Visible Light. Chem. Eng. J. 2020, 384, 123256–123256. DOI: 10.1016/j.cej.2019.123256.
  • Kodavatiganti, S.; Bhat, A. P.; Gogate, P. R. Intensified Degradation of Acid Violet 7 Dye Using Ultrasound Combined with Hydrogen Peroxide, Fenton, and Persulfate. Sep. Purif. Technol. 2021, 279, 1383–5866.
  • Liu, N.; Lu, N.; Yu, HTao.; Chen, S.; Quan, X. Enhanced Degradation of Organic Water Pollutants by Photocatalytic in-Situ Activation of Sulfate Based on Z-Scheme g-C3N4/BiPO4. Chemical Engineering Journal 2022, 428, 132116–138947. DOI: 10.1016/j.cej.2021.132116.
  • D. S.; S. P.; V. G. A.; G. M.; M. D.; C. D. Integrating Biodegradation and Ozone-Catalysed Oxidation for Treatment and Reuse of Biomass Gasification Wastewater. J. Water Process Eng. 2021, 43, 2214–7144.
  • Yz, A.; Lz, A.; Cn, A.; Eh, A.; Lya, B.; Xla, B. 3D/2D MOF-Derived CoCeOx/g-C3N4 Z-Scheme Heterojunction for Visible Light Photocatalysis: Hydrogen Production and Degradation of Carbamazepine. J. Alloys Compd. 2021, 890, 0925–8388.
  • Acar, C.; Dincer, I.; Calin, J. Z. A Review on Selected Heterogeneous Photocatalysts for Hydrogen Production. Int. J. Energy Res. 2014, 38, 1903–1920. DOI: 10.1002/er.3211.
  • Chen, Z.; Hu, Y.; Wang, J.; Shen, Q.; Zhang, Y.; Ding, C.; Bai, Y.; Jiang, G.; Li, Z.; Gaponik, N. Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes. Chem. Mater. 2020, 32, 1517–2734. DOI: 10.1021/acs.chemmater.9b04582.
  • Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. Engl. 2007, 46, 52–66. DOI: 10.1002/anie.200602373.
  • Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization[J]. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729–15735. DOI: 10.1073/pnas.0603395103.
  • Pasini, S. M.; Valério, A.; Yin, G.; Wang, J.; de Souza, S. M. A. G. U.; Hotza, D.; de Souza, A. A. U. An Overview on Nanostructured TiO2 –Containing Fibers for Photocatalytic Degradation of Organic Pollutants in Wastewater Treatment[J. J. Water Process Eng. 2021, 40, 101827–107144. ]. DOI: 10.1016/j.jwpe.2020.101827.
  • Zhou, Y.; Cai, T.; Liu, S.; Liu, Y.; Chen, H.; Li, Z.; Du, J.; Lei, Z.; Peng, H. N-Doped Magnetic Three-Dimensional Carbon Microspheres@TiO2 with a Porous Architecture for Enhanced Degradation of Tetracycline and Methyl Orange via Adsorption/Photocatalysis Synergy. Chem. Eng. J. 2021, 411, 128615. DOI: 10.1016/j.cej.2021.128615.
  • Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. DOI: 10.1021/cr1001645.
  • Chahal, S.; Rani, N.; Kumar, A.; Kumar, P. Electronic Structure and Photocatalytic Activity of Samarium Doped Cerium Oxide Nanoparticles for Hazardous Rose Bengal Dye Degradation. Vacuum 2020, 172, 109075. DOI: 10.1016/j.vacuum.2019.109075.
  • Wu, C. Solvothermal Synthesis of N-Doped CeO2 Microspheres with Visible Light-Driven Photocatalytic Activity. Mater. Lett. 2015, 139, 382–384. DOI: 10.1016/j.matlet.2014.10.127.
  • Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-Photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24, 229–7597. DOI: 10.1002/adma.201102752.
  • Jiang, W.; Zhu, Y.; Zhu, G.; Zhang, Z.; Chen, X.; Yao, W. Three-Dimensional Photocatalysts with a Network Structure. J. Mater. Chem. A 2017, 5, 5661–5679. DOI: 10.1039/C7TA00398F.
  • Mansingh, S.; Padhi, D. K.; Parida, K. M. Enhanced Photocatalytic Activity of Nanostructured Fe Doped CeO2 for Hydrogen Production under Visible Light Irradiation. Int. J. Hydrogen Energy 2016, 41, 14133–14146. DOI: 10.1016/j.ijhydene.2016.05.191.
  • Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218–2734. DOI: 10.1002/anie.201916012.
  • Zhu, L.; Li, H.; Xia, P.; Liu, Z.; Xiong, D. Hierarchical ZnO Decorated with CeO2 Nanoparticles as Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2018, 10, 1944–2483.
  • Latha, P.; Prakash, K.; Karuthapandian, S. Enhanced Visible Light Photocatalytic Activity of CeO2/Alumina Nanocomposite: Synthesized via Facile Mixing-Calcination Method for Dye Degradation. Adv. Powder Technol. 2017, 28, 2903–8831. DOI: 10.1016/j.apt.2017.08.017.
  • Habib, I. Y.; Burhan, J.; Jaladi, F.; Lim, C. M.; Usman, A.; Kumara, N. T. R. N.; Tsang, S. C. E.; Mahadi, A. H. Effect of Cr Doping in CeO2 Nanostructures on Photocatalysis and H2O2 Assisted Methylene Blue Dye Degradation. Catal. Today 2021, 375, 506–5861. DOI: 10.1016/j.cattod.2020.04.008.
  • Erik, C.; Elettra, R.; Debora, F.; Paola, C.; Cristina, P. M. Ternary Systems Based on ZnO/CeO2/Cu2O for the Degradation of Phenol and Carbamazepine. J. Alloys Compd. 2021, 856, 0925–8388.
  • Zhang, F.; He, Y.; Li, W.; Zhao, L.; Chen, H.; He, X.; Guo, J. N-Doped Carbon Dots Decorated Ceria Hollow Spheres for Enhanced Activity of RhB Degradation by Visible Light. Chem. Pap. 2018, 72, 1417–7290. DOI: 10.1007/s11696-018-0395-9.
  • Zhang, F.; Zhao, L.; Chen, H.; He, Y.; Tian, P.; Zeng, X. Synthesis of Mesoporous Fe/h-CeO2 Hollow Micro-Spheres with Enhanced Visible Light Photocatalytic Activity. Mater. Res. Express 2019, 6, 095516–095516. DOI: 10.1088/2053-1591/ab3015.
  • Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. D. Complex Nanostructures from Materials Based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Adv. Mater. 2017, 29, 1703614–1703614. DOI: 10.1002/adma.201703614.
  • Hao, J.; Xu, X.; Fei, H.; Li, L.; Yan, B. Functionalization of Metal–Organic Frameworks for Photoactive Materials. Adv. Mater. 2018, 30, 1705634–1709648. DOI: 10.1002/adma.201705634.
  • Liu, X.; Tang, B.; Long, J.; Zhang, W.; Liu, X.; Mirza, Z. The Development of MOFs-Based Nanomaterials in Heterogeneous Organocatalysis. Sci. Bull. 2018, 63, 502–524. DOI: 10.1016/j.scib.2018.03.009.
  • Zhan, W.; Sun, L.; Han, X. Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks. Nano Micro Lett. 2019, 11, 2311–6706.
  • Kuila, A.; Saravanan, P. Intramolecular Orbital Engineered Hetero bi-Metallic Ce-Fe MOF with Reduced Transition Energy and Enhanced Visible Light Property. Appl. Organomet. Chem. 2020, 34, 1099–0739. DOI: 10.1002/aoc.5728.
  • Fazlali, F.; Hajian, A.; Afkhami, A.; Bagheri, H. A Superficial Approach for Fabricating Unique Ternary AgI@TiO2/Zr-MOF Composites: An Excellent Interfacial with Improved Photocatalytic Light-Responsive under Visible Light. J. Photochem. Photobiol. A: Chem. 2020, 400, 112–717.
  • Liu, X.; Dang, R.; Dong, W.; Huang, X.; Tang, J.; Gao, H.; Wang, G. A Sandwich-like Heterostructure of TiO2 Nanosheets with MIL-100(Fe): A Platform for Efficient Visible-Light-Driven Photocatalysis. Appl. Catal. B 2017, 209, 506–3373. DOI: 10.1016/j.apcatb.2017.02.073.
  • Unterlass, M. M. Journal of Materials Chemistry A and Materials Advances Editor's Choice Web Collection: "Recent Advances in Hydrothermal Materials Synthesis". J. Mater. Chem. A 2021, 9, 661–662. DOI: 10.1039/D0TA90284E.
  • Dai, X.; Chen, L.; Li, Z.; Li, X.; He, Y. CuS/KTa0.75Nb0.25O3 Nanocomposite Utilizing Solar and Mechanical Energy for Catalytic N2 Fixation. J. Colloid Interface Sci. 2021, 603, 0021–9797.
  • Duan, J.; Chen, S.; Zhao, C. Ultrathin Metal-Organic Framework Array for Efficient Electrocatalytic Water Splitting. Nat. Commun. 2017, 8, 15341. DOI: 10.1038/ncomms15341.
  • Sonnauer, A.; Hoffmann, F.; Fröba, M.; Kienle, L.; Duppel, V.; Thommes, M.; Serre, C.; Férey, G.; Stock, N. Giant Pores in a Chromium 2,6-Naphthalenedicarboxylate Open-Framework Structure with MIL-101 Topology. Angew. Chem. Int. Ed. Engl. 2009, 48, 3791–3794. DOI: 10.1002/anie.200805980.
  • Xu, L.; Xia, J.; Xu, H.; Yin, S.; Wang, K.; Huang, L.; Wang, L.; Li, H. Reactable Ionic Liquid Assisted Solvothermal Synthesis of Graphite-like C3N4 Hybridized α-Fe2O3 Hollow Microspheres with Enhanced Supercapacitive Performance. J. Power Sources 2014, 245, 866–874. DOI: 10.1016/j.jpowsour.2013.07.014.
  • Paradkar, M.M.; Irudayaraj, J. A Rapid FTIR Spectroscopic Method for Estimation of Caffeine in Soft Drinks and Total Methylxanthines in Tea and Coffee. J. Food Sci. 2010, 67, 2507–2511.
  • Saikia, M.; Bhuyan, D.; Saikia, L. Facile Synthesis of Fe3O4 Nanoparticles on Metal Organic Framework MIL-101(Cr): Characterization and Catalytic Activity. New J. Chem. 2015, 39, 64–67. DOI: 10.1039/C4NJ01312C.
  • Jayaraman, A.; Kourouklis, G. A.; Uitert, L. G. V. A High Pressure Raman Study of ThO2 to 40 GPa and Pressure-Induced Phase Transition from Fluorite Structure. Pramana J. Phys. 1988, 30, 225–231. DOI: 10.1007/BF02846696.
  • Parker, J. C.; Siegel, R. W. Raman Microprobe Study of Nanophase TiO2 and Oxidation-Induced Spectral Changes. J. Mater. Res. 1990, 5, 1246–1252. DOI: 10.1557/JMR.1990.1246.
  • Parker, J. C.; Siegel, R. W. Calibration of the Raman Spectrum to the Oxygen Stoichiometry of Nanophase TiO2. Appl. Phys. Lett. 1990, 57, 943–945. DOI: 10.1063/1.104274.
  • Qiu, B.; Wang, C.; Zhang, N.; Cai, L.; Xiong, Y.; Chai, Y. CeO2 Induced Interfacial Co2+ Octahedral Sites and Oxygen Vacancies for Water Oxidation. ACS Catal. 2019, 9, 6484–6490. DOI: 10.1021/acscatal.9b01819.
  • Zhao, B.; Shao, Q.; Hao, L.; Zhang, L.; Liu, Z.; Zhang, B.; Ge, S.; Guo, Z. Yeast-Template Synthesized Fe-Doped Cerium Oxide Hollow Microspheres for Visible Photodegradation of Acid Orange 7. J. Colloid Interface Sci. 2018, 511, 39–47. DOI: 10.1016/j.jcis.2017.09.077.
  • Lin, H.; Tang, X.; Wang, J.; Zeng, Q.; Chen, H.; Ren, W.; Sun, J.; Zhang, H. Enhanced Visible-Light Photocatalysis of Clofibric Acid Using Graphitic Carbon Nitride Modified by Cerium Oxide Nanoparticles. J. Hazard. Mater. 2021, 405, 124204. DOI: 10.1016/j.jhazmat.2020.124204.
  • Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-Nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. Engl. 2016, 55, 1830–1834. DOI: 10.1002/anie.201508505.
  • Song, S.; Wu, K.; Wu, H.; Guo, J.; Zhang, L. Synthesis of Z-Scheme Multi-Shelled ZnO/AgVO3 Spheres as Photocatalysts for the Degradation of Ciprofloxacin and Reduction of Chromium(VI). J. Mater. Sci. 2020, 55, 4987–5007. DOI: 10.1007/s10853-019-04316-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.