134
Views
1
CrossRef citations to date
0
Altmetric
Articles

The synthesis and properties of PANI/(TOCNF-SMWCNT) supercapacitor electrode materials by in situ polymerization

, , , , , & show all
Pages 1516-1525 | Received 17 Aug 2021, Accepted 17 Dec 2021, Published online: 08 Jan 2022

References

  • Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. Encyclopedia of Electrochemical Power Sources; ScienceDirect: Britain, 2009.
  • Tseng, L. H.; Hsiao, C. H.; Nguyen, D. D.; Hsieh, P. Y.; Lee, C. Y.; Tai, N. H. Activated Carbon Sandwiched Manganese Dioxide/Graphene Ternary Composites for Supercapacitor Electrodes. Electrochim. Acta 2018, 266, 284–292. DOI: 10.1016/j.electacta.2018.02.029.
  • Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of Materials and Fabrication Methods. J. Energy Eng. 2013, 139, 72–79. DOI: 10.1061/(ASCE)EY.1943-7897.0000102.
  • Yang, P.-H.; Qu, X.-P.; Liu, K.; Duan, J.-J.; Li, J.; Chen, Q.; Xue, G.; B.;Xie, W.-K.; Xu, Z.-M.; Zhou, J. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy. ACS Appl. Mater. Interfaces 2018, 10, 8010–8015. DOI: 10.1021/acsami.7b18640.
  • Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano. 2015, 9, 5198–5207. DOI: 10.1021/acsnano.5b00582.
  • Kouchachvili, L.; Yaici, W.; Entchev, E. Hybrid Battery/Supercapacitor Energy Storage System for the Electric Vehicles. J. Power Sources 2018, 374, 237–248. DOI: 10.1016/j.jpowsour.2017.11.040.
  • Wei, J.-L.; Li, X.; R.;Xue, H.-G.; Shao, J.-Y.; Zhu, R.-M.; Pang, H. Hollow Structural Transition Metal Oxide for AdvancedSupercapacitors. Adv. Mater. Interfaces 2018, 5, 1701509. DOI: 10.1002/admi.201701509.
  • Zhao, X.; Mao, L.; Cheng, Q.-H.; Li, J.; Liao, F.-F.; Yang, G.; Y.;Xie, L.; Zhao, C.; L.;Chen, L.-Y. Two-Dimensional Spinel Structured Co-Based Materials for High Performance Supercapacitors: A Critical Review. Chem. Eng. J. 2020, 387, 124081. DOI: 10.1016/j.cej.2020.124081.
  • Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. Chemical Supercapacitors: A Review Focusing on Metallic Compounds and Conducting Polymers. J. Mater. Chem. A. 2021, 9, 1970–2017. DOI: 10.1039/D0TA09655E.
  • Liu, R.; Zhou, A.; Zhang, X.; R.;Mu, J.; B.;Che, H.-W.; Wang, Y.-M.; Wang, T.-T.; Zhang, Z.-X.; Kou, Z.-K. Fundamentals, Advances and Challenges of Transition Metal Compounds-Based Supercapacitors. Chem. Eng. J. 2021, 412, 128611. DOI: 10.1016/j.cej.2021.128611.
  • Fleischmann, S.; Mitchell, J. B.; Wang, R.; Zhan, C.; Jiang, D.-E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. DOI: 10.1021/acs.chemrev.0c00170.
  • Kulandaivalu, S.; Sulaiman, Y. Recent Advances in Layer-by-Layer Assembled Conducting Polymer Based Composites for Supercapacitors. Energies 2019, 12, 2107. DOI: 10.3390/en12112107.
  • Yang, W.-L.; Gao, Z.; Song, N.-N.; Zhang, Y.-Y.; Yang, Y.-C.; Wang, J. Synthesis of Hollow Polyaniline Nano-Capsules and Their Supercapacitor Application. J. Power Sources 2014, 272, 915–921. DOI: 10.1016/j.jpowsour.2014.09.013.
  • Jin, D.-D.; Zhou, Y.; Li, T.; Hu, S.; Shen, Y.-Y.; Zhang, Y.; W.;Qin, Z.-Y. Efficient Construction and Enhanced Capacitive Properties of Interfacial Polymerized Polyaniline Nanofibers with the Assistance of Isopropanol in Aqueous Phase. Electrochim. Acta 2017, 257, 311–320. DOI: 10.1016/j.electacta.2017.10.062.
  • Wang, Y.-Q.; Ding, Y.; Guo, X.-L.; Yu, G.-H. Conductive Polymers for Stretchable Supercapacitors. Nano Res. 2019, 12, 1978–1987. DOI: 10.1007/s12274-019-2296-9.
  • Liu, W.; Wang, S.; Wu, Q.; Huan, L.; Zhang, X.; Yao, C.; Chen, M. Fabrication of Ternary Hierarchical Nanofibers MnO2/PANI/CNT and Theirs Application in Electrochemical Supercapacitors. Chem. Eng. Sci. 2016, 156, 178–185. DOI: 10.1016/j.ces.2016.09.025.
  • Zhao, Z.; Xie, Y. Enhanced Electrochemical Performance of Carbon Quantum Dots-Polyaniline Hybrid. J. Power Sources 2017, 337, 54–64. DOI: 10.1016/j.jpowsour.2016.10.110.
  • Zhang, W.; Kong, Y.; Jin, X.; Yan, B.; Diao, G.; Piao, Y. Supramolecule-Assisted Synthesis of Cyclodextrin Polymer Functionalized Polyaniline/Carbon Nanotube with Core-Shell Nanostructure as High-Performance Supercapacitor Material. Electrochim. Acta 2020, 331, 135345. DOI: 10.1016/j.electacta.2019.135345.
  • Wang, H.-X.; Biswas, S. K.; Zhu, S.-L.; Lu, Y.; Yue, Y.; Y.;Han, J.-Q.; Xu, X.-W.; Wu, Q.-L.; Xiao, H.-N. Self-Healable Electro-Conductive Hydrogels Based on Core-Shell Structured Nanocellulose/Carbon Nanotubes Hybrids for Use as Flexible Supercapacitors. Nanomaterials 2020, 10, 112. DOI: 10.3390/nano10010112.
  • Chen, C.; Hu, L. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Acc. Chem. Res. 2018, 51, 3154–3165. DOI: 10.1021/acs.accounts.8b00391.
  • Han, J.-Q.; Ding, Q.-Q.; Mei, C.-T.; Wu, Q.; L.;Yue, Y.-Y.; Xu, X.-W. An Intrinsically Self-Healing and Biocompatible Electroconductive Hydrogel Based on Nanostructured Nanocellulose-Polyaniline Complexes Embedded in a Viscoelastic Polymer Network towards Flexible Conductors and Electrodes. Electrochim. Acta 2019, 318, 660–672. DOI: 10.1016/j.electacta.2019.06.132.
  • Abdelhamid, H. N.; Mathew, A. P. In-Situ Growth of Zeolitic Imidazolate Frameworks into a Cellulosic Filter Paper for the Reduction of 4-Nitrophenol. Carbohydr. Polym. 2021, 274, 118657. DOI: 10.1016/j.carbpol.2021.118657.
  • Ryu, J.; Ramaraj, B.; Yoon, K. R. Surface Functionalization of Multi-Walled Carbon Nanotubes through Surface-Initiated Atom Transfer Radical Polymerization of Glycidyl Methacrylate. Surf. Interface Anal. 2009, 41, 303–309. DOI: 10.1002/sia.3021.
  • Xiao, X.-Z.; Yi, Q.-F. Synthesis and Electrochemical Capacity of MnO2/SMWCNT/PANI Ternary Composites. J. Inorg. Mater. 2013, 28, 825–830. DOI: 10.3724/SP.J.1077.2013.12640.
  • Cai, Y.-Z.; Fang, Y.-S.; Cao, W.; Q.;He, P.; Cao, M.-S. MXene-CNT/PANI Ternary Material with Excellent Supercapacitive Performance Driven by Synergy. J. Alloys Compd. 2021, 868, 159159. DOI: 10.1016/j.jallcom.2021.159159.
  • Meesala, R.; Mordi, M. N.; Mansor, S. M.; Rosli, M. M. Synthesis and Crystal Structure Analysis of 9-Phenyl-Beta-Carboline. Mol. Crystals Liquid Cryst. 2014, 605, 125–134. DOI: 10.1080/15421406.2014.882699.
  • Yin, X.; Tang, J.; N.;Pan, G.; H.;Tian, W.-M.; Xu, W.-J.; Huang, Z.-J. Hydrothermal Synthesis, Structure, Properties of a Novel Supramolecular Complex: LaCd(Bpy)(4)(NO3)(5). Mol. Cryst. Liq. Cryst. 2015, 606, 208–215. DOI: 10.1080/15421406.2014.905318.
  • Bortamuly, R.; Konwar, G.; Boruah, P. K.; Das, M. R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA Composites: synthesis, Characterization, and Utilization as Supercapacitor Electrode Materials. Ionics 2020, 26, 5747–5756. DOI: 10.1007/s11581-020-03690-7.
  • Mandal, G.; Choudhary, R. B. rGO-Y2O3 Intercalated PANI Matrix (PANI-rGO-Y2O3) Based Polymeric Nanohybrid Material as Electron Transport Layer for OLED Application. Res. Chem. Intermed. 2019, 45, 3755–3775. DOI: 10.1007/s11164-019-03819-y.
  • Jia, H.; X.;Sun, Z.-J.; Jiang, D.-C.; Du, P.-W. Covalent Cobalt Porphyrin Framework on Multiwalled Carbon Nanotubes for Efficient Water Oxidation at Low Overpotential. Chem. Mater. 2015, 27, 4586–4593. DOI: 10.1021/acs.chemmater.5b00882.
  • Zhou, J.; Wang, C.; Qian, Z.; S.;Chen, C.-C.; Ma, J.-J.; Du, G.-H.; Jianrong, C.; R.;Feng, H. Highly Efficient Fluorescent Multi-Walled Carbon Nanotubes Functionalized with Diamines and Amides. J. Mater. Chem. 2012, 22, 11912–11914. DOI: 10.1039/c2jm31192e.
  • Han, X.-F.; Zhang, L.; Li, C.-Z. Preparation of Polydopamine-Functionalized graphene-Fe3O4 Magnetic Composites with High Adsorption Capacities. RSC Adv. 2014, 4, 30536–30541. DOI: 10.1039/C4RA04182H.
  • Zhang, X.-F.; Elsayed, I.; Navarathna, C.; Schueneman, G. T.; Hassan, E. I. B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. DOI: 10.1021/acsami.9b15139.
  • Ru, J.; Wang, Y.-J.; Chang, L.; F.;Chen, H.-L.; Li, D.-C. Preparation and Characterization of Water-Soluble Carbon Nanotube Reinforced Nafion Membranes and so-Based Ionic Polymer Metal Composite Actuators. Smart Mater. Struct. 2016, 25, 095006. DOI: 10.1088/0964-1726/25/9/095006.
  • Zhu, Z.-Z.; Wang, G.; C.;Sun, M.-Q.; Li, X.-W.; .; Li, C.-Z. Fabrication and Electrochemical Characterization of Polyaniline Nanorods Modified with Sulfonated Carbon Nanotubes for Supercapacitor Applications. Electrochim. Acta 2011, 56, 1366–1372. DOI: 10.1016/j.electacta.2010.10.070.
  • Gupta, N.; Gupta, S. M.; Sharma, S. K. Synthesis, Characterization and Dispersion Stability of Water-Based Cu-CNT Hybrid Nanofluid without Surfactant. Microfluid. Nanofluid. 2021, 25, 14. DOI: 10.1007/s10404-021-02421-2.
  • Kuzhandaivel, H.; Manickam, S.; Balasingam, S. K.; Franklin, M. C.; Kim, H. J.; Nallathambi, K. S. Sulfur and Nitrogen-Doped Graphene Quantum Dots/PANI Nanocomposites for Supercapacitors. New J. Chem. 2021, 45, 4101–4110. DOI: 10.1039/D1NJ00038A.
  • Maruthi, N.; Faisal, M.; Raghavendra, N.; Prasanna, B. P.; Manohara, S. R.; Revanasiddappa, M. Anticorrosive Polyaniline-Coated Copper Oxide (PANI/CuO) Nanocomposites with Tunable Electrical Properties for Broadband Electromagnetic Interference Shielding. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126611. DOI: 10.1016/j.colsurfa.2021.126611.
  • He, D.; Gao, Y.; Yao, Y.-C.; Wu, L.; Zhang, J.; Huang, Z.-H.; Wang, M.-X. Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo2O4 From a Single Biometallic Metal-Organic Frameworks (Zn/Co-MOF)). Front. Chem. 2020, 8, 719. DOI: 10.3389/fchem.2020.00719.
  • Sun, S.; X.;Han, F.-Q.; Wu, X.; L.;Fan, Z.-J. One-Step Synthesis of Biomass Derived O, N-Codoped Hierarchical Porous Carbon with High Surface Area for Supercapacitors. Chin Chem. Lett. 2020, 31, 2235–2238. DOI: 10.1016/j.cclet.2019.11.023.
  • Wan, L.; Wei, W.; Xie, M.-J.; Zhang, Y.; Li, X.; Xiao, R.; Che, J.; Du, C. Nitrogen, Sulfur co-Doped Hierarchically Porous Carbon from Rape Pollen as High-Performance Supercapacitor Electrode. Electrochim. Acta 2019, 311, 72–82. DOI: 10.1016/j.electacta.2019.04.106.
  • Zhu, Y.; Y.;An, S.-L.; Cui, J.-L.; Qiu, H.; R.;Sun, X.-J.; Zhang, Y.; Q.;He, W.-X. Three-Dimensional Network-like Amorphous NiCo-LDH Nanofilms Coupled with Co3O4 Nanowires for High-Performance Supercapacitor. Ceram. Int. 2019, 45, 22095–22103. DOI: 10.1016/j.ceramint.2019.07.226.
  • Wu, K.-Z.; Fu, P.-Y.; Wang, Z.-J.; Zhao, Q.-W.; Guo, J.; N.;Ruan, B.; Wu, M.-X. The Effect of Polyaniline Electrode Doped with Transition Metal Ions for Supercapacitors. Polym. Adv. Technol. 2021, 32, 2082–2092. DOI: 10.1002/pat.5238.
  • Zhang, B.; Xiao, C.; H.;Xie, S.-M.; Liang, J.; Chen, X.; Tang, Y.-H. Iron-Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting. Chem. Mater. 2016, 28, 6934–6941. DOI: 10.1021/acs.chemmater.6b02610.
  • Ye, Q.-L.; Luo, Y.; L.;Cen, Q.-C.; Dong, R.-T.; Luo, T.-P.; Xu, X.-T.; Wang, F.; Li, B. In Situ Hybridization of Polyaniline on Mn Oxide for High-Performance Supercapacitor. J. Energy Storage 2021, 36, 102330. DOI: 10.1016/j.est.2021.102330.
  • Ashourdan, M.; Semnani, A.; Hasanpour, F.; Moosavifard, S. E. Synthesis of Nickel Cobalt Manganese Metal Organic Framework@High Quality Graphene Composites as Novel Electrode Materials for High Performance Supercapacitors. J. Electroanal. Chem. 2021, 895, 115452. DOI: 10.1016/j.jelechem.2021.115452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.